
IOANA PUSCAS

HUMAN–MACHINE  
INTERFACES IN  
AUTONOMOUS  
WEAPON SYSTEMS
Considerations for Human Control



UNIDIRii

The designations employed and the presentation of the material in this publication do not 
imply the expression of any opinion whatsoever on the part of the Secretariat of the United 
Nations concerning the legal status of any country, territory, city or area, or of its authori-
ties, or concerning the delimitation of its frontiers or boundaries. The views expressed in 
this publication are the sole responsibility of the author. They do not necessarily reflect the 
views or opinions of the United Nations, UNIDIR, its other staff members or its sponsors.

Ioana Puscas is Researcher on AI in the Security and Technology Programme at UNIDIR. 

NOTE

ABOUT THE AUTHOR

The United Nations Institute for Disarmament Research (UNIDIR) is a voluntarily funded,  
autonomous institute within the United Nations. One of the few policy institutes worldwide 
focusing on disarmament, UNIDIR generates knowledge and promotes dialogue and action 
on disarmament and security. Based in Geneva, UNIDIR assists the international community 
to develop the practical, innovative ideas needed to find solutions to critical security problems.

ABOUT UNIDIR

Support from UNIDIR’s core funders provides the foundation for all of the Institute’s activ-
ities. This study was produced by the Security and Technology Programme, which is funded 
by the Governments of Germany, the Netherlands, and Switzerland, and by Microsoft. The 
author wishes to thank the following individuals for their invaluable advice and assistance 
on this paper: Dr. Giacomo Persi Paoli (UNIDIR), Sarah Grand-Clement (UNIDIR);  
the following experts interviewed for this project: Dr. Mennatallah El-Assady, Dr. Mica 
Endsley, Parrish Hanna, Dr. Ming Hou, Dr. Matthew Johnson, and three other anonymous 
experts; and the following external reviewers of this study: Dr. Jurriaan van Diggelen,  
Dr. Marcel Baltzer, Dr. Elisabeth Hoffberger-Pippan, and Prof. Duncan Brumby. 

ACKNOWLEDGEMENTS

www.unidir.org | © UNIDIR 2022  
Photos: © Shutterstock: Cover: Color4260, p2: Gorodenkoff,  p8: Hunter Bliss Images, p12: DR MANAGER, p19: ConceptCafe,  
p21: Jackie Niam, p25: ikatwm.

www.unidir.org


HUMAN–MACHINE INTERFACES IN AUTONOMOUS WEAPON SYSTEMS iii

Table of contents

Abbreviations and Acronyms ...............................................................................................................................................

Executive summary .....................................................................................................................................................................

Introduction ......................................................................................................................................................................................

1 Human–machine interfaces and human control .................................................................................................

 1.1. Practical measures for human control and the role of interfaces ..................................................

 1.2. Interfaces and the architecture of autonomy ..............................................................................................

1.2.1. Situation awareness ..........................................................................................................................................

1.2.2. Understanding AWS status and behaviour ..........................................................................................

2. Interfaces of AWS and human–machine interaction ........................................................................................

 2.1. New performance demands and challenges of cognitive involvement .......................................

 2.2. Interface design and context of use ..................................................................................................................

3. Approaches to HMI design ................................................................................................................................................

 3.1. Human-centred design ...............................................................................................................................................

 3.2. Interaction-centred approaches ..........................................................................................................................

4. Challenges for training .........................................................................................................................................................

 4.1. Understanding levels of autonomy and functional allocation ...........................................................

 4.2. Training for human–AI teams ................................................................................................................................

5. AI explainability and transparency ...............................................................................................................................

 5.1. XAI dashboards and their limitations ................................................................................................................

 5.2. XAI and autonomous weapon systems ...........................................................................................................

Conclusions .......................................................................................................................................................................................

Annex A ...............................................................................................................................................................................................

Bibliography .....................................................................................................................................................................................

iv

1

3

5

5

6

7

8

9

9

11

13

13

14

17

17

18

22

23

24

26

28

34



UNIDIRiv

AI artificial intelligence 

AWS autonomous weapon systems 

CCW Convention on Certain Conventional Weapons

GGE Group of Governmental Experts

HMI human–machine interface

IHL international humanitarian law 

ISO International Organization for Standardization 

LAWS lethal autonomous weapons systems 

ML machine learning 

UNIDIR United Nations Institute for Disarmament Research 

XAI Explainable AI 

Abbreviations & Acronyms 



HUMAN–MACHINE INTERFACES IN AUTONOMOUS WEAPON SYSTEMS 1

Executive summary

Human control over autonomous weapon  
systems (AWS) has been a core theme in the 
discussions of the Group of Governmental Ex-
perts on Lethal Autonomous Weapons Systems 
(GGE on LAWS), which has met formally since 
2017 in the framework of the Convention on 
Certain Conventional Weapons (CCW). 

The meaning and operationalization of control 
have been among the most contentious  
topics in the Group’s debates. Three main  
modalities of control have emerged in recent 
years and are now widely considered to  
impose practical limits on AWS: control on the 
weapon parameters, control on the environ-
ment of use, and control through human– 
machine interaction during use.  

Human–machine interfaces, which are the 
physical nexus between operators and the 
AWS, play a critical role in human control, and 
their role has been highlighted both at the 
GGE on LAWS and in various national policy 
documents. Human–machine interfaces are 
important to the development and retention 
of situational awareness, and to the architec-
ture of control: allowing operators to monitor 
a system, and if necessary, to deactivate or to 
override it.  

This report highlights several important  
dimensions of the role of interfaces in  
human control over AWS. It focuses in parti- 
cular on the challenges, both present and  
anticipated, brought about by an increasing 
use of artificial intelligence (AI) and machine 
learning (ML) in such systems. The report 
draws, in several cases, on examples from  
automation in the vehicles industry, which 
can provide significant lessons in terms of 
controllability and system design. 

Key findings and conclusions of this study 
are as follows:

• It is important, first, to situate the discus-
sion about the role of the interface in the 
context of human–machine interaction  
in autonomous systems, which imposes 

significant performance requirements for 
human operators, and which comes with 
inherent risks such as over-trust or under- 
trust in the technology, which are further 
exacerbated by the use of AI/ML. 

• For an interface to be an effective means 
of control, it must have a high degree of  
usability (meaning it must be engineered 
and developed in a way that enables the 
users to achieve their goals), and opera-
tors must be adequately trained to use  
it effectively. The achievement of these 
criteria entails important changes with  
the introduction of AI and ML in weapon 
systems: as weapon systems become 
more complex (e.g., endowed with more 
autonomy in critical functions), interfaces 
are poised to become more complex, as 
are the training requirements for human 
operators.

• Recent research in interface design indi-
cates a focus on the interaction between  
humans and AI and on ‘human–AI teaming’, 
and how that must be reflected in the design 
process. This is supported by the belief that 
as machines become more complex, options 
for human–machine interaction must evolve 
accordingly. 

• Personnel training in the context of systems 
that continue to learn over time prompts 
the need for additional training curricula 
and methodologies that can support oper-
ators in building appropriate mental  
models of the systems, and in calibrating 
trust and expectations. 

• One way to mitigate issues of trust and  
incomprehensibility in systems reliant  
on AI/ML is to embed more options for  
explainability and transparency of the AI 
process into interfaces, such as with visu-
alization techniques (e.g., dashboards that 
reveal part of the process or conclusions 
of the AI). These efforts are important but 
bring, themselves, additional complexities 
to human–machine interaction, which can 
compromise human control. 
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Introduction

Human–machine interfaces are the physical 
nexus between human operators and auton-
omous systems, and a critical element in the 
array of options for human control over sys-
tems. An interface combines both hardware 
and software, and can include a range of 
components, such as physical control panels 
with buttons, dashboards and touchscreens. 
Interfaces allow the human operator to mon-
itor a process (e.g., navigation), to modify or 
configure control settings, to adjust parame-
ters and commands, or to manually override 
the system’s operation. They can also display 
critical information and present the operator 
with an understanding of both the system’s 
status and, in the case of remotely operated 
systems, of the environment in which that 
system operates. 

Interfaces have featured in the discussions 
of the Group of Governmental Experts on 
emerging technologies in the area of Lethal 
Autonomous Weapons Systems (GGE on 
LAWS) on numerous occasions during the 
Group’s deliberations on human control  
over autonomous weapon systems (AWS).  
Understandably, interfaces have been con-
sidered important because they provide at 
least two critical means of retaining a degree 
of control: allowing operators to monitor  
the behaviour and actions of a system, and to  
deactivate or to override it (e.g., by manually 
taking control) should it fail to perform as  
expected. As systems become more auto- 
nomous, however, interfaces become more 
complex as well. 

This report analyses the role of interfaces 
in the exercise of human control. It presents 
several aspects of interface design and use 
in the context of AWS and highlights impor- 
tant trends on the horizon as more AI- 
enabled functions are to be incorporated in 
weapon systems.  

Generally, for an interface to be an effective 
means of control, it must have a high degree 
of usability (which means it must be engi-
neered and developed in a way that enables 
users to achieve their objectives) and opera-
tors must be adequately trained to use it  
effectively. The realization of these funda-
mental criteria becomes more complicated 
with the scaling up of autonomy and the use 
of AI and ML in weapon systems—as weapon 
systems become more complex, options for 
human–machine interaction and for interface 
design become more complex, as are the 
training requirements for human operators. 

Because interfaces cannot be meaningfully 
discussed as stand-alone capabilities, the re-
port integrates this analysis into the broader 
context of autonomy1 and human–machine 
interaction. The challenges brought about 
by autonomy in weapons systems are 
weaved into all aspects of interface design 
and use, and in personnel training require-
ments. 

1   Note on terminology: this report refers to the concepts of ‘autonomy’ and ‘automation’. Automation generally refers 
to systems that are deterministic and predictable, whereas autonomy comes with less predictability (depending on the 
level of autonomy) and less deterministic behaviour. To date, the vast majority of available research is in automation 
because this field has existed for much longer, hence the numerous references to automated systems and automation 
in this report. From an end-user perspective, however, the distinction between automated and autonomous systems is 
not always visible and the issues faced may be very similar. As a forerunner to autonomy, automation provides impor- 
tant lessons to take into account and which can inform the policy community’s evaluations of risks and challenges in 
autonomous systems. Further, the distinction between autonomy and automation can also be characterized in terms 
of the amount of human control and a system’s ability to operate without human interference. In this sense, a weapon 
system that uses machine learning or deep learning to detect and define the type of target, and then presents that 
information to the human operator who can decide to engage or not, is not autonomous per se. Rather, such a system 
incorporates functions that have varying degrees of autonomy.
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The report begins with an overview of the 
characterization of human control over AWS 
in multilateral and policy discussions, including 
in the GGE on LAWS, and provides a general 
introduction to the role of interfaces in  
human control (Section 1). It then situates 
the discussion of the role of interfaces in the 
broader context of human–machine inter- 
action, which highlights key challenges for 
human operator performance (Section 2). 
The subsequent section presents the main 
approaches to interface design. The descrip-
tion of various approaches hints at important 
considerations for human control: system 
design has evolved to increase usability, but 
the introduction of AI/ML is also rendering 
the technology that supports human–machine 
interaction more complex (Section 3). In  

addition to system design, training is another 
critical factor in considerations of human 
control. More autonomy and more complex 
interfaces introduce new challenges for 
training for men and women and all members 
of armed forces, especially in the context of  
AI/ML-enabled systems (Section 4). Handling 
the complexity of systems that use AI, and 
which continue to learn and adapt over time, 
is difficult and the lack of predictability and 
transparency in these systems can impact 
trust in and reliance on the technology.  
Efforts to address this complexity with  
approaches to explainability and transparency 
(‘Explainable AI’, or ‘XAI’), such as through  
visualization techniques, are important but 
continue to present limitations (Section 5).
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High levels of autonomy in a system may 
conjure up images of machines that perform 
actions alone but in reality, no system to 
date—no matter how autonomous—is entirely 
independent of some form of human control 
or supervision.2 As the goal of full autonomy 
in weapon systems is neither feasible at the 
moment, nor desirable from a military effi-
ciency standpoint,3 human–machine interac-
tion remains central to discussions of auto- 
nomous weapons systems. 

Human–machine interaction has been a core 
theme in the discussions of the GGE on LAWS. 
The importance of this topic was reflected in 
the Group’s Guiding Principles, adopted by 
consensus in 2019, particularly Principle C, 
which states: 

(c)  Human-machine interaction, which may 
take various forms and be implemented  
at various stages of the life cycle of a 
weapon, should ensure that the potential 
use of weapons systems based on emer- 
ging technologies in the area of lethal  
autonomous weapons systems is in com-
pliance with applicable international law, in 
particular IHL. In determining the quality 
and extent of human-machine interaction, 
a range of factors should be considered  
including the operational context, and the 
characteristics and capabilities of the 
weapons system as a whole.4  

Human control emerged therein as a critical 
concept and has remained central to the Group’s 

debates over the years.5 Despite many diver-
gences about which capabilities need to be 
banned outright or not, there is broad consen-
sus among State Parties that, regardless of the 
degree of autonomy in a weapon system, a cer-
tain level of human control over autonomous 
weapon systems needs to be maintained.6 

Several critical themes related to autonomy in 
warfare (e.g., responsibility and accountability, 
applicability of international humanitarian law) 
are effectively within the purview of the con-
cept of ‘human control’. This echoes a similar 
development in the use of AI, ML and robotics 
in the civilian sector, where discussions around 
‘controllability’ have taken center stage, com-
bining “complex technical, ergonomic, legal, 
moral and organizational factors”.7 

1.1. Practical measures for human control 
and the role of interfaces 

Distilling the meaning and parameters of  
human control in the context of AWS has 
been challenging, complicated further by  
differences among systems and operational 
environments.8 However, general tangible 
measures of human control that have been 
proposed encompass considerations of  
system design and use.9 This taxonomy of 
control illustrates two different but comple-
mentary modalities for exercising human 
control, both through the design of the  
weapon system itself, which includes both 
hardware and software elements, and opera-
tional control during use.

2   Endsley (2017).
3   See GGE on LAWS (2018a); GGE on LAWS (2018b).
4   GGE on LAWS (2019b) 
5   The concept of ‘meaningful human control’, introduced by Article 36, has been highly influential as it refers more specifically 

to human control over critical decisions in the use of lethal force. It therefore goes further in providing more precision (referring 
to ‘control’ rather than the ‘loop’ or human ‘judgment’) and qualifying the nature of that control (i.e., ‘meaningful’); UNIDIR (2014, 
3). The theoretical, practical and legal ambiguities of the term were however not resolved (e.g., what legal regulations derive 
from this principle?). See Santoni de Sio and van den Hoven (2018). This report will refer to the broader term of ‘human control’ 
because it has been more generally used in technical literature. 

6   Schwarz (2021). 
7   Boardman and Butcher (2019, 2). 
8   Schwarz (2021) notes that the discussion on control is misleading when discussing systems that increasingly take on decision- 

making roles, whereas forums such as the GGE on LAWS continue to embrace an instrumentalist position on technology, which 
assumes that technology is a tool over which their users retain full agency. A similar question is raised in Section 4.2. in the  
context of the rejection by the GGE on LAWS of anthropomorphic language (i.e., Principle (i) of the Guiding Principles).

9   iPRAW (2019). 

1. Human–machine interfaces and human control 
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Box 1. Practical measures of human control over AWS 

The 2020 SIPRI and ICRC Report “Limits on Autonomy in Weapon Systems”10 proposed 
three practical measures to exercise control: 1) control of the weapon parameters (such 
as, type of target); 2) control of the environment of use (for example, by limiting the use of 
AWS to specific locations/areas); and 3) control through human–machine interaction 
during use (such as by retaining the ability to supervise an AWS). A similar classification 
has featured in the discussions of the GGE on LAWS, including in 2020, when the Chair’s 
summary lists these same three elements of control as a basis for engaging in further  
deliberations:  

States shall ensure a human operator or commander exercises judgement over the  
operational context, including through constraints on, inter alia, tasks, target profiles, 
time-frame of operation, and scope of movement over an area and operating environ-
ment, applied in individual attacks; in other words, constraints applied to the weapon 
system, the parameters of the weapon system’s use and the required interaction  
between human and weapon system.11 

The role of human–machine interfaces 
(HMIs) has been highlighted on several occa-
sions as critical to the operationalization  
of human control, with HMIs spanning both 
criteria of system design and use. 

The role of interfaces is particularly impor- 
tant in the operation of uncrewed systems 
controlled from a remote (sometimes, very 
distant) location, where a central feature of 
the system control is that operators’ sensory 
connection with the machine is mediated by 
an interface.12

Rendering an autonomous system control- 
lable does not hinge on interfaces alone, nor 
is it limited to the ability of the human opera-
tor to take manual control of the machine.13 
However, as the nexus between humans  
and machines, interfaces are critical to the 
control of an AWS, with direct consequences 

for how lawfully a system is used. While  
parameters of control may be exercised in 
multiple ways, and ‘distributed’ across the 
system’s design (e.g., types of targets etc.), 
interfaces afford operators the possibility to 
monitor the system and to intervene should 
other forms of control falter or when circum-
stances on the ground change and “inva- 
lidate planning assumptions”.14  

1.2. Interfaces and the architecture  
of autonomy 

User interfaces are defined in ISO standard 
ISO 9241-110:2020 as the “set of all the 
components of an interactive system that 
provide information and controls for the 
user to accomplish specific tasks with the 
interactive system”.

10   Boulanin et al. (2020, 8–9).
11   GGE on LAWS (2021, 6).
12   Riley et al. (2017, 180). 
13   The Report of the GGE on LAWS from 2020 explicitly articulated this point: “Effective human control, involvement or 

judgment may not necessarily equate to direct, manual control but rather contextual factors including boundaries placed 
on the weapon and environment of use, and requirements for human-machine interaction” (GGE on LAWS, 2021, 8).

14   Boulanin et al. (2020, 9).
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Interfaces are subsystems of human–machine 
systems15 and “the window (both metaphori-
cally and literally) through which operators  
interact with the machine”.16 Interfaces in-
clude numerous components, which vary de- 
pending on the system, such as input  
controls (for example, buttons and checkboxes), 
navigational components, information com-
ponents, etc. 

Generally, HMIs facilitate both input and  
output: input allows the operator to enter  
information into the technical system and out-
put indicates the effects resulting from the  
input.17 For example, one way in which the  
input–output loop may look for an AWS would 
entail the operator going through the interface 
menu and introducing certain coordinates into 
the system when engaging a target (input). 
The system would respond by providing its 
own coordinates and assessments, such as on 
collateral damage or other feedback based on 
operational procedures (output).18  

1.2.1. Situation awareness 

Human–machine interfaces play an import-
ant role in the development of situation 
awareness (SA), which is central to human–
machine interaction especially in dynamic 
environments. SA is impacted by both in- 
dividual and organizational factors (such as 
stress, workload, task-switching requirements, 
or team dynamics) and by system factors, 
such as the mechanics of the system (e.g., 
the capacity of sensor technology to gather 
relevant data) and system interfaces.19 The 
quality of the interface design can signi- 
ficantly and directly improve SA. 

A sufficient level of SA will also help the  
operator realize, for example, that a certain  
situation is outside the bounds of automa-
tion capabilities, or that the automation is 
performing incorrectly.20

15   The term ‘system’ here is used in the sense employed in the ergonomics domain, which refers to a system in the  
context of ‘human–machine systems’, describing various elements and the interaction between them. ‘Weapon  
systems’ are typically defined as a combination of weapons, related equipment, personnel, means of delivery, etc.  
In other parts of the report, however, the reference to systems is narrower (such as a computerized system).

16   Hou et al. (2015, 33).
17   Ibid.
18   Interview with Ming Hou (26 April 2022).
19   Endsley (2015, 11–12)
20   Endsley (2017, 8–9).
21   Endsley (1995, 36).
22   Ibid.; Gillan et al. (2017, 57).
23   Endsley (1995, 37).
24   Ibid. SA can be studied both at the individual level and at the team level. Every team member must have SA for the respon- 

sibilities assigned to them, and as a team they can develop shared SA when the goals of two or more team members overlap.   

Box 2. SA Levels 1-2-3

The standard conceptualization of SA includes three hierarchical phases: “the perception 
of the elements in the environment within a volume of time and space, the comprehension 
of their meaning and the projection of their status in the near future”.21  

Level 1 SA. Perception of the Elements in the Environment: for example, for a tactical 
commander it means perceiving basic data on location, type, and capabilities of enemy 
and friendly forces in a given area.22 

Level 2 SA. Comprehension of the Current Situation: for example, for a tactical commander, 
this means understanding how the appearance of a certain number of an enemy aircraft in 
an area of interest relates to or clashes with their objectives.23

Level 3 SA. Projection of Future Status: for example, a commander would be able to project 
that the current presence and offensive actions of a certain aircraft will lead it to attack in a 
certain way and certain area. This allows deciding on a course of action to achieve goals.24   
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1.2.2. Understanding AWS status  
and behaviour 

Interfaces are critical in representing key  
characteristics for control of an autonomous 
system, including system observability,  
predictability and directability.25 

• Observability refers to the ability to observe 
and monitor the status of the system. 

• Predictability refers to the property of 
understanding how the system behaves. 

• Directability concerns the ability  
to influence the system.

While the technical literature includes differ-
ent taxonomies of elements of control,26  
the goal of observability–predictability– 
directability synthesizes the fundamental  
requirements both for the AWS’ autonomous 
capabilities and for interface design.27

25   Johnson et al. (2014, 9–10).
26   See, for example, Siebert et al. (2022).
27   Johnson et al. (2014, 9); interview with Matthew Johnson (31 March 2022). 
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Interfaces are not a stand-alone capability 
and their role in human control can only be 
understood in the framework of human– 
machine interaction. This section looks in 
particular at exigencies of human perfor-
mance in the broader context of automation 
and autonomy, and the importance of  
framing the role of interfaces in relation to the 
context of their use. 

2.1. New performance demands and  
challenges of cognitive involvement 

The introduction of autonomy presents im-
portant changes in performance demands.28  
Developing effective systems is not only a 
matter of engineering and technical advances. 
Rather, “the most problematic aspect of … 
autonomous operations is the human aspect, 
or human–machine integration”.29  

Even when the human operator is ‘merely’ 
tasked with the oversight of an autonomous 
system, they face numerous challenges that 
may arise from data overload, from incom-
prehensibility of the system, from inadequate 
training, from interfaces that are not de-
signed with the user’s real needs in mind, and 
so forth.

For example, in the USS Vincennes incident 
of 1988, when the Iran Air Flight 655  
commercial aircraft was shot down by an  
Aegis combat system stationed on the  
warship, a poorly designed weapon control 
computer interface led the plane to be incor-
rectly identified as a fighter jet. The display of 
information was overly complex and inade-
quate, giving the controllers the impression 
that the airliner was descending towards the 
ship, while in fact it was moving away from 
the ship.30 Further, overconfidence in the  
Aegis technology ultimately led to ‘over-
trust’ in the system, and a failure to challenge 
the system’s identification.31 

To mitigate some of the risks in human– 
machine interactions in military settings, it 
has been suggested that interfaces need to 
maintain the user’s cognitive involvement,  
a point that has been embraced by several  
delegations at the GGE on LAWS.32 

Maintaining human cognitive involvement in 
autonomous systems is challenging for at 
least two reasons.33  

2. Interfaces of AWS and human–machine interaction

28   Hawley et al. (2005); Development, Concepts and Doctrine Centre (2018). Parasuraman and V. Riley (1997, 231) made 
a significant contribution to the discussion of how automation changes work for humans. The ‘ironies of automation’ 
have been, however, known for over four decades, following the introduction of automation in industrial processes 
and positing that the more advanced the automation, the more complex and crucial the contribution of the human. 
Bainbridge (1983); National Academies of Sciences, Engineering and Medicine (2022, 44). 

29   Hawley (2017, 11).
30   Cummings (2006, 23); Scharre, (2018, 169–170).
31   Swartz (2001).
32   For example, in the Commentary on the Guiding Principles, Switzerland proposed that one possible way of exer- 

cising control could be achieved by “maintaining the ability of human supervision, by using technology (for instance 
appropriate human-machine interfaces) to support the human cognitive involvement”. GGE on LAWS (2021, 88).

33   These points are further elaborated in the following sections, both in discussions of system design and personnel 
training. 



UNIDIR10

1. The first is that, when assigned super- 
visory roles, humans are simply not able to 
retain attention constantly and consistently, 
and the expectation of sustained operator 
vigilance, which is needed for intervention  
at the right moment, is unreasonable.34 Dele-
gating a rather passive role35 to human oper-
ators runs the real risk of getting them disen-
gaged, which makes it difficult to maintain 
alertness. As one expert explained, “often in 
[command and control] centres, nothing is 
happening and then, all of a sudden some-
thing happens, and you need to get back into 
the cognitive loop. It is difficult to make sense 
of the situation, no matter how good the  
interface is”.36  

Some solutions for maintaining higher rates 
of vigilance have been proposed through in-
terface design. A report of the Development, 
Concepts and Doctrine Centre of the UK 
Ministry of Defence suggests that interfaces 
can be optimized to support this goal, inclu- 
ding by requiring operators 1) to search for  
defined objects (which is shown to enhance 
mental engagement), and 2) to explore things 
of interests, such as boundaries or anoma-
lies.37 

Other smaller and more subtle kinds of tasks 
can include features such as text messages 
and alerts prompting the operator to check 
system status.38 Ultimately however the  
answer to maintaining vigilance is for opera-
tors to be engaged in meaningful tasks, “and 
not going to the back-end”.39 While training  

curricula play an important role in building 
supervisory skills, the allocation of (meaning-
ful) tasks to human operators remains key to 
maintaining cognitive involvement. 

2. The second reason can be explained by  
inherent challenges in human–machine inter- 
action, including challenges of “automation 
complacency”,40 loss of attention that can 
occur as certain tasks get automated and  
attention goes to other tasks,41 or ambiguous 
or inexact expectations from the system. 
Some of these challenges stem from what  
is known as the ‘automation conundrum’. 
This posits that the loss of human alertness 
is directly proportional to the system’s  
enhanced automation and reliability: “The 
more automation is added to a system, and 
the more reliable and robust that automation 
is, the less likely that human operators over-
seeing the automation will be aware of  
critical information and able to take over 
manual control when needed”.42

When a system that is highly automated and 
highly reliable fails, it introduces complicated 
performance challenges for the operator. 
Because high levels of automation increase 
dependence on the system, they simultane-
ously increase the likelihood of failed manual 
recovery.43 This has been described as the 
‘lumberjack effect’, exposing the tradeoffs 
that come from benefits of high reliability 
and the attendant costs of failure, similarly to 
trees in a forest: “the higher they are, the  
farther they fall”.44 In automation research, 

34 Boulanin et al. (2020, 19); Development, Concepts and Doctrine Centre (2018); Hawley (2017, 9).
35 Challenges related to ‘passive cognition’ have been observed even with experienced air traffic controllers; see  

Endsley (2017); Metzger and Parasuraman (2001). 
36 Interview with anonymous expert (25 March 2022). 
37 Development, Concepts and Doctrine Centre (2018, 32).
38 Interview with Ming Hou (26 April 2022).
39 Interview with Mica Endsley (15 March 2022). 
40 Parasuraman and V. Riley (1997).
41 Interview with Mica Endsley (15 March 2022).
42 Endsley (2017, 8).
43 National Academies of Sciences, Engineering, and Medicine (2022, 42).
44 Onnasch et al. (2014, 477). The metaphor of the ‘lumberjack effect’ has been widely used in human–systems integra-

tion research.  
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45 Parasuraman (2000); Cummings (2006).
46 Lee and See (2004, 55).
47 National Academies of Sciences, Engineering and Medicine (2022, 18). 
48 ISO 9241-220:2019 defines usability as the “extent to which a system, product or service can be used by specified 

users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context”.
49 Adams (2002). 
50 Riley et al. (2017, 178–179).
51 US Department of Defense (2012, 2–3).
52 GGE on LAWS (2018c); US Mission (2021).
53 GGE on LAWS (2019a).
54 Interview with anonymous expert (25 March 2022).

this situation has also been discussed  
for over two decades as a risk of skill  
degradation,45 which concerns especially 
high-performing automated systems that 
function properly for a long time prior to the 
first failure. In such case, operators learn to 
rely extensively on the system, over-trust it, 
and even become complacent. Calibration of 
trust refers to the “correspondence between 
a person’s trust in the automation and the auto- 
mation’s capabilities”, and can manifest in  
either over-trust, or conversely, under-trust.46  

Further, in the context of the use of AI,  
it is difficult to quantify “the ability of an  
AI system to appropriately calibrate and  
execute its expected functions”.47 The shift  
towards human–AI ‘teaming’ as a preferred 
paradigm in human–AI collaboration (elabo-
rated in Sections 3.2. and 4.2.), and the notion 
that humans and AI need to collaborate as 
teammates with a shared goal, comes with 
its own sets of challenges. 

2.2. Interface design and context of use

The design of an interface is critical for its  
usability48 as it “can directly affect the opera-
tor’s ability and desire to complete a task … to 
understand the current situation, make deci-
sions, as well as supervise and provide high 
level commands to the robotic system”.49 For 
example, studies on UAV control for recon-
naissance missions revealed that operators 
wanted to ‘fly the camera’, meaning that 
rather than devoting attention to controlling 

the vehicle and its systems, operators 
showed a strong preference for being able to 
position the camera where it needed to be to 
meet their mission objectives. Consequently, 
the design options were focused on user in-
terfaces that would eliminate direct control 
of roll, pitch, and yaw.50

General principles of design for AWS have 
been addressed in various forums. For exam-
ple, the United States Department of  
Defense Directive 3000.09 stipulates that 
“the interface between people and machines 
for autonomous and semi-autonomous 
weapon systems shall: a. Be readily under-
standable to trained operators; b. Provide 
traceable feedback on system status;  
c. Provide clear procedures for trained oper-
ators to activate and deactivate system 
functions”.51

This recommendation was reiterated by  
the United States at the GGE on LAWS on 
several occasions.52 The 2019 GGE Report 
lists “readily understandable human-machine 
interfaces and controls” as a possible risk 
mitigation measure, alongside measures 
such as “rigorous testing and evaluation of 
systems” and training of personnel.53  

A great deal of focus on making interfaces 
‘clear’ or ‘readily understandable’, however, 
risks being misconstrued as a need for  
simplicity. This may inadequately shift the  
attention to micro-ergonomics, or elements 
such as colour, font size, etc. in a display  
system, which although important are “not 
the place to start”.54 As a rule, display  
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functions need to be concerned with the 
control of ‘mission-relevant information’, 
while minimizing ‘mission-irrelevant infor- 
mation’.55 However, sense-making in com-
plex systems is not limited to the data com-
ing from a screen. The view that “technical 
and tactical complexity can be reduced  
to manageable levels … through ‘proper’  
system and interface design”56 is contested 
by many experts in cognitive systems engi-
neering, who believe that this approach does 
not reduce complexity but merely hides it 
from users.57

This does not mean that the solution rests 
with display complexity,58 but that other  
conditions of system interface design must 

be met for the interface to be conductive to 
enhanced human performance and control.

A fundamental requirement in the interac-
tion with an AWS is to build a good mental 
model of the system prior to use (including 
understanding the system’s levels of auto-
mation, and whether it is behaving appropri-
ately and performing at the expected param-
eters), and to understand the system’s scope 
of behaviour, as well as the system’s likely 
changes over time—a key aspect of ML-
based systems.59 These requirements must 
be reflected in the design of the interface, as 
well as in different training needs.

55 Davis et al. (2017, 408).
56 Hawley and Mares (2017, 16).
57 Hollnagel and Woods (2005); Hawley and Mares (2017). A similar view was shared by several experts interviewed for 

the project. 
58 See Endsley (2017).
59 Interview with anonymous expert (22 March 2022); interview with Mica Endsley (15 March 2022); interview with  

Mennatallah El-Assady (8 April 2022).
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This section presents an overview of  
approaches to interface design in highly  
automated and autonomous systems, start-
ing with ‘human-centred design’, followed  
by ‘interaction-focused’ approaches. As  
discussions of human–machine teaming60 or  
human–AI teaming61 proliferate, options for 
interface design become more complex. 

Human–systems integration (HSI), a topic 
originating in the mid-1980s, addresses  
human considerations in system design and 
implementation. It is a ‘total system’ approach 
that aims for integration across systems,  
including humans, technology, operational 
contexts, and the interfaces among these ele-
ments.62 As is shown in this section, the intro-
duction of AI and ML (and a growing focus on 
human–AI teaming) has revealed limitations in 
traditional or cognitive systems-engineering 
approaches, and their inability to address how 
new systems need to adapt.63 

3.1. Human-centred design 

Two general requirements for interface  
designers are: 

1.  to understand what robotics operators 
across various tasks and domains need  
to know; and 

2.  to determine how to present the infor-
mation in an integrated fashion in order  
to support situational awareness and 
decision-making.64

Integrating what the operators need to know 
into the process is fundamental to human- 
centred design. This paradigm emerged in 
the 1980s to address shortcomings in the 
technology-centred paradigm that was tradi-
tionally the standard and which meant that 
an interface would reflect first what the en- 
gineers creating the system considered  
essential, or what they viewed as relevant.65  

Human-centred design, in contrast, is an  
approach to systems design and develop-
ment that “aims to make interactive systems 
more usable by focusing on the use of the 
system; applying human factors, ergonomics 
and usability knowledge and techniques”.66  
A human-centred design, whether it is  
conceptualized as soldier-, customer-, or  
user-centred, seeks to optimize the interface 
“around how people work, rather than force 
people to change how they work to accom-
modate the system”.67 It regards the opera-
tor as “a component of the system just like 
the sensors or underlying code”, and whose 
capabilities must be incorporated into the 
design.68

3. Approaches to HMI design 

60 The Development, Concepts and Doctrine Centre of the UK Ministry of Defence proposed the term ‘human–machine 
teaming’ in a 2018 Joint Concept Note and this position was reiterated in an Expert Paper submitted to the GGE 
LAWS in 2020, referring to human–machine teaming as “an approach which recognizes that the integration of  
humans and machines working towards a common goal, with their relative strengths and weaknesses, is key to  
military success”. GGE on LAWS (2020, 2–3).

61 Endsley (2017, 6); National Academies of Sciences, Engineering and Medicine (2022). 
62 See, for example, US Department of Defense (2022). HSI is a widely used concept and approach. 
63 National Academy of Sciences, Engineering and Medicine (2022, 71).
64 Gillan et al. (2017, 57–58).
65 This does not mean that users’ needs were previously sidelined in the design process. For example, the concept  

of ‘participatory design’ was proposed in the 1970s to integrate the expectations and creativity of the user in the 
design process; see Flemisch et al. (2008). Design problems persisted, however, leading to many shortcomings  
in how information was integrated in displays as systems became more complex (Endsley, 2013); the integration of 
users’ perspectives remained in practice often superficial (interview with Matthew Johnson, 31 March 2022).

66 ISO 9241-220:2019.
67 Savage-Knepshield (2017, 276).
68 Oury and Ritter (2021, 22).
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In practice, human-centred design follows an 
iterative process that begins before the  
development of the interface69 and requires 
integrating both design and evaluation 
through “incremental development and iter-
ative refinement” of the system, based on  
input and feedback,70 understanding the  
users,71 and integrating their perspectives 
from the beginning.72 During this process, 
there may be emerging properties in the  
system, or people may use the system in  
different ways. This will impact several choices 
in the design, including the amount of cogni-
tive load on the operator, their reliance on the 
system, and the choice of when to use or 
when to turn off certain functions.73 In short, 
it is a process of “evidence-based evolution-
ary tinkering”.74 

With an increase in autonomous functions, 
additional requirements of human-centred 
design have been suggested in order to  
support the operator in their understanding 
of the system’s functionality. In addition  
to effectively presenting the needed in- 
formation for decision-making, it has been  
suggested that interfaces must include cues 
related to the state of the automation  
(including modes and system boundary  
conditions), support for mode transitions  
(including, for example, the necessary support 
for transition to manual control), and system 
transparency that provides understandability 
and predictability of the system’s actions.75    

3.2. Interaction-centred approaches 

More recent approaches to design of intelli-
gent systems, beginning with the 2010s,  
focus on the design process as shaped by 
and responding to the interaction76 and inter-
dependence between humans and machines. 

Strictly speaking, interaction was always part of 
the design process, only in different modalities, 
and the fundamental principles of human- 
centred design have not been abandoned. 
However, research over the past decade has  
focused more closely on capturing the collabo-
rative dimension of human–machine interac-
tion, and as technology now affords a more  
rapid adaptation to a system’s learning. This 
evolution is underscored by an emerging  
understanding that building effective autono-
mous systems relies upon a successful  
approach to human–autonomy teaming,77 or 
human–AI teaming and that as machine  
capabilities expand, human–machine interac-
tion capabilities78 must also expand. 

For example, one approach, “coactive design”, 
assesses the design implications that follow 
from human–robot teaming, where both  
humans and systems participate simultane-
ously at completing a task, and where systems 
need to be designed to support coordination, 
collaboration and teamwork.79 This design  
approach regards teaming as a process that  
involves both parties (humans and AI systems) 
and is premised on the interdependence that 
exists in the interaction between the two. 

69 Interview with anonymous expert (8 April 2022).
70 Savage-Knepshield (2017, 275).
71 Suggested methods for designers to learn about users include a menu of actions, from simply talking to them, 

watching them work, having them use interfaces created by the same designers, to getting more general information 
about their work environments (Oury & Ritter, 2021, 16–17).  

72 One expert added that what is important is to integrate the users’ perspectives “at the right moment, not necessarily 
as early as possible” (interview with anonymous expert, 8 April 2022).

73 Interview with anonymous expert (22 March 2022). 
74 Interview with anonymous expert (25 March 2022). The same expert noted that organizational factors matter too: the 

process must be supported by an organizational culture in which honest feedback is possible and taken into account.  
Boardman and Butcher (2019, 11) make a similar point in discussing dimensions of human control, which has an organi-
zational dimension as well, insofar as the organizational culture must not impact the “willingness to question system 
behaviours and actions”.

75 Endsley (2017, 10); Endsley, Bolte and Jones (2003).
76 Interaction is defined by ISO/TS 20282-2:2013 as “bidirectional information exchange between users and equipment”. 

Equipment includes both hardware and software. Information exchange may include physical actions, resulting in sensory 
feedback.

77 Endsley (2017, 5).
78 Johnson et al. (2018).
79 Johnson et al. (2011). 
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80 van der Waa et al. (2020); van der Waa et al. (2021).  
81 Sperrle et al. (2020).
82 Interview with Mennatallah El-Assady (8 April 2022). 
83 Idem.
84 Idem.
85 Interview with Parrish Hanna (16 March 2022).
86 Hartwich et al. (2021, 14–15).
87 Examples include gesture recognition, eye tracking, facial recognition, fingerprint and voice biometrics. Burt (2020). 
88 Interview with Parrish Hanna (16 March 2022).
89 Ahlstrom and Friedman-Berg (2006, 623–624).
90 Hou et al. (2022, 11).

Other models of cooperation in human–AI 
teams have been proposed in the form of 
“dynamic task allocation”,80 meaning that 
the riskiest and most morally salient tasks 
can be allocated to humans, while the other 
decisions are assigned to artificial agents. 
This approach requires that explanations  
be intrinsically part of the human–agent  
collaboration (see section on explainability) 
and part of the interface design. 

Another approach called “co-adaptive  
guidance”81 is based on a similar principle 
that interfaces need to adapt based on feed-
back from the user and to calibrate cognitive  
involvement, trust and changing expecta-
tions over time. This approach accounts for 
the ‘three moving parts’ in human–systems 
interaction in systems that learn over time:  
1) the changing mental models of the human 
operators, as 2) facts on the ground are also 
changing, and as 3) the system/AI model  
itself is changing.82  

This would require the interface to synchro-
nize and represent the system’s learning and 
adaption. For this interaction to be effective, 
it also requires that the system become more 
of an agent in the sense that it is able to 
prompt the operator to intervene, such as  
by communicating to them ‘I need input’  
or ‘I do not know’ in certain situations.83 The 
co-adaptive learning that supports this  
approach, also entails that the system’s  
model of the user will guide it to detect  
inconsistencies or contradictory signals  
and can thus function as a safeguard. For  
example, the system could stop altogether  
if the operator is suddenly replaced.84

Some of these principles are applied in the 
autonomous vehicles industry, where inter-
face design is increasingly approached as a 
“co-creation process”, meaning it aspires to 
integrate drivers’ preferences or to introduce 
corrective elements, such as by prompting  
a young driver to pay more attention.85 In the 
autonomous vehicles industry, user-specific 
adaptability of interfaces is considered  
important for the future of the industry and 
for garnering more trust in the technology, 
especially at higher levels of automation.86 
Increased levels of automation however will 
require a tradeoff in data from the driver,  
including more biometric data,87 because “as 
you give more control and build more trust, 
the vehicle needs to know more about you; 
now you as an operator need to be moni-
tored”.88 

In the military, the use of biometric and  
neurophysiological data in interface design 
is not a new idea, although it remains for now 
largely exploratory. For example, simulations 
conducted in air traffic control have employed 
eye movement parameters to understand 
cognitive demands as well as fluctuations in 
cognitive workload following different kinds 
of displays (e.g., cluttered weather displays 
that complicate the pilot’s effort to extract 
relevant data).89 While this applies to testing 
and simulation protocols, the use of biome- 
tric and neurophysiological data could be  
integrated in a real-time closed-feedback 
loop analysis system. Such a loop would  
assess a user’s interactions and update the 
system about the user’s state and ongoing 
cognitive load.90
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The technical scholarship that highlights the 
need for more ‘user state’ data in systems 
underlines the fact that, as systems acquire 
more decision-making capabilities, human–
machine teaming depends on elements of 
trust from both parties. In the context of  
autonomous systems, the meaning of trust91  
refers to verification mechanisms embedded 
in the system. Such mechanisms would  
ensure, for example, that the operator’s inputs 
are consistent and not impacted by stress.92

Finally, another design approach includes  
immersive interfaces, which have been re-
searched in recent years in various domains, 
including automated vehicles93 and uncrewed 
aerial vehicles.94 Immersion and immersive 
technologies refer to virtual worlds that are 
simulated, dynamic, and include elements such 
as rich three-dimensional spaces and high- 
fidelity motion.95

Virtual reality (VR) and augmented reality 
(AR) systems have been used for military 
training and to create simulated environ-
ments. However, an immersive interface 
would be used for mission execution and in 
order to promote collaborative behaviour 
(i.e., human–machine collaboration). 

Immersion, as a design choice, is considered 
a more natural collaboration platform and is 
promoted as a practical tool to visualize both 
the physical world and its mirrored visual 
presentation with the same level of dimen-
sionality.96 It has been suggested previously 
that the remoteness and distancing created 
through the interface introduces a ‘moral 
buffer’ that allows operators to distance 
themselves from their actions, and from neg-
ative consequences.97 Immersion may also 
be a useful method to reduce cognitive and 
moral distancing, a concern raised repeatedly 
in the case of AWS98 and, generally, about 
weapons systems operated from a distance, 
such as drones.99  

91 In the deliberations of the GGE on LAWS, the use of anthropomorphic language (e.g., trust) attributed to LAWS was 
rejected as a matter of principle, including with Guiding Principle (i), which states that “In crafting potential policy 
measures, emerging technologies in the area of lethal autonomous weapons systems should not be anthropo- 
morphized”. Arguably, the technical use of the term ‘trust’ in this case refers to a system component, i.e., a verification 
mechanism, and through which it would ‘verify’ the user’s inputs, without impinging upon human responsibility and 
legal obligations. See, however, Box 3.

92 Hou (2020); Hou et al. (2022, 14–17).
93 Georg and Diermeyer (2019).
94 Feuerriegel et al. (2021).
95 Schultze and Orlikowski (2010).
96 Feuerriegel et al. (2021, 65).
97 Cummings (2006, 26). Cummings cautions against the use of elements in design that may further exacerbate the 

sense of remoteness and lack of responsibility, such as graphic elements that make the interface appear like a video 
game.

98 The ‘cognitive distancing’ introduced by AWS may be driven by both temporal and spatial distancing: there may  
be hours, days, weeks between activation and application of force (temporal distancing), and uncertainty about  
the location where the use of force will be applied (spatial distancing). Boulanin et al. (2020, 12).

99 Coeckelbergh (2013). The author makes the point that drone fighting (or ‘screenfighting’) introduces not only physical 
distance but also moral distance between the fighter and their opponent. 
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100 GGE on LAWS (2020); Janssen et al. (2019, 101); interview with anonymous expert (22 March 2022). Function and 
task allocation between humans and machines is an ‘evergreen’ theme in human–automation interaction (Janssen 
et al. (2019, 101). 

101 Interview with Mica Endsley (15 March 2022); interview with anonymous expert (22 March 2022); interview with 
Mennatallah El-Assady (8 April 2022). 

102 A system that is ‘static’ may also use AI, but learning takes place in known, observable and deterministic environ-
ments. Such a system may employ, for example, a search algorithm to construct sequences of actions to achieve  
a goal, or problem-solving algorithms, which could be used for planning. Russell & Norvig (2022, chp. 3, chp. 14). 
Modelling dynamic situations, and situations that present degrees of uncertainty over time introduces more  
challenges. Russell and Norvig (2022, chp. 15).

103 Holland Michel (2020).
104 Interview with Mica Endsley (15 March 2022).
105 Flemisch et al. (2017); see Bahner et al. (2008).
106 Flemisch et al. (2017, 323–324). This was called the ‘unsafe valley of automation’, an expression that draws on  

the metaphor of the ‘uncanny valley’. The authors of the study did not conclude that automated systems, or higher 
levels of automation are unsafe per se, but that “there are unsafe regions around safe automation designs and  
combination of different assistance and automation levels of transitions between levels or modes” (327).  

107 Cummings (2006, 23); see also Scharre (2018, 137–145).

Training of operators of AWS is an important 
element of control. For example, in the deli- 
berations of the GGE on LAWS, characteriza-
tions of control refer to a weapon’s entire life 
cycle, which also includes training (see Annex 
A). 

Autonomous systems introduce new types 
of training requirements for human opera-
tors, which depend on the properties and 
complexity of the system interface. 

For a start, operators need to understand  
the system more holistically, in terms of its 
functional bounds and the functional alloca-
tion between human and machine.100 Further, 
training in the context of autonomous  
systems that use AI is challenging as the  
systems evolve and keep learning.101 Training 
requirements become more complex com-
pared to static systems.102 The way that  
systems change their internal models is  
often opaque and hard to understand even 
for their developers103 and it is difficult to 
present a model of learning that an operator 
can train on because the system will learn 
differently in different environments (e.g., 
training phase vs. operational environment).104

4.1. Understanding levels of autonomy  
and functional allocation 

The distribution of tasks and the relationship 
between perceived/attributed level of auto- 
nomy and the actual level of capacity of the 
autonomous system is critical in calibrating 
trust and reliance on the system.105 Prelimi-
nary studies in the context of autonomous 
vehicles reveal important lessons about the 
inherent risks in transitions between levels 
or modes of automation, and when the human 
operator (driver, in this case) does not accu-
rately assess the system’s limitations. For  
example, a particularly vulnerable area has 
been identified at the point between partially 
and highly automated systems, which leads 
to crashes when the driver perceives the car 
to be more automated than it is at a given 
moment.106    

Challenges that arise from an insufficient  
understanding of a system’s real capabilities 
have also surfaced in the military, for exam-
ple, with the Patriot fratricide incident of 
2003, where a US Army Patriot missile  
system shot down a UK Tornado and a US 
Navy F/A-18. The displays of the system 
were confusing and at times incorrect.  
The operators had 10 seconds to veto a  
computer solution and lacked training “in  
a highly complex management-by-exception 
system”.107 

4. Challenges for training
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108 Hawley (2017, 9).
109 Janssen et al. (2019, 101–102).
110 Interview with Matthew Johnson (31 March 2022).
111 Hawley (2007, 9). Hawley refers to automated systems, but this taxonomy largely holds for autonomous systems. 
112 Ibid., p. 11.
113 Interview with anonymous expert (25 March 2022).
114 Interview with Mennatallah El-Assady (8 April 2022); interview with anonymous expert (8 April 2022), who also 

noted that this is not just a technical problem, but also a cultural one as engineers often tend to highlight where the 
system works best but have difficulties being transparent about the system’s weaknesses. 

115 See Hoffman et al. (2014, 13); and Hoffman et al. (2009) for the conceptualization of ‘accelerated expertise’ and 
training for complex systems and for highly dynamic environments.  

116 Interview with Mica Endsley (15 March 2022).
117 Hawley (2017, 9); interview with anonymous expert (22 March 2022); Endsley and Kiris (1995). 
118 Interview with anonymous expert (25 March 2022).
119 Interview with Matthew Johnson (31 March 2022).
120 A US Air Force Report (“Human–Autonomy Teaming”) suggests the concept of ‘flexible autonomy’, which stipulates 

that levels of autonomy can shift over time, ‘back and forth’ between airmen and autonomous systems, either at 
human discretion, or based on criteria built into the autonomy (such as when the airman loses connection with the 
system, or when there is not enough available time for in-the-loop control). United States Air Force (2015, 9–12); 
National Academies of Science, Engineering, and Medicine (2022, 45).

Experience with such systems led an en- 
gineering psychologist with the US Army  
Research Laboratory to conclude that “an 
automated system in the hands of an  
inadequately trained crew is a de facto fully 
automated system”.108 Inadequate training 
can lead to incorrect expectations, an ina- 
bility to cope with system failures,109 or an  
inability to override the system’s course of 
action, rendering it effectively “fully auto- 
nomous by neglect”.110 Interface design 
alone cannot compensate for highly effec-
tive training. 

Training in the context of autonomous  
systems must focus on developing operator 
expertise.111 This includes both quantitative 
and qualitative elements:112

➔	 qualitative, with a more rigorous  
focus on the development of mental 
models of the system, and with a view 
to ensure that training is not merely 
‘habit transfer’ (a common challenge 
when using a new interface because 
operators will tend to refer to older 
models).113 This includes understan- 
ding, for example, variables such as  
the extent of autonomous functions, 
the system’s changes from one envi-
ronment to another, as well as where 
the system is most vulnerable or its 
uncertainties;114 and 

➔	 quantitative, including changes to  
duration of training,115 or, for example, to 
the intervals for updating the training.116

It is however important to note that there  
remain persistent human limitations to  
training in the context of supervisory roles.  
Sustained vigilance in supervisory roles is 
recognized to be a very difficult task.117 Keep-
ing focus is a matter of both selection and 
training, and it is now well known that some 
people are better at sustained vigilance than 
others.118 However, even with appropriate  
selection processes and mandatory training, 
longer times spent in repetitive or super- 
visory tasks will lead to an increase in error 
rates. A solution for keeping operators cogni-
tively involved hinges on more complex  
factors including on an incremental use of 
autonomous functions119 that would allow  
human operators to better understand the 
system, learn when and how to revert to 
manual control, and to avoid losing the sense 
of responsibility.120 

4.2. Training for human–AI teams  

Finally, in the context of increased interde-
pendence between humans and AI systems, 
an increasing body of research underlines 
that training must be adapted to take into  
account human–AI teaming and teamwork. 
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121 McNeese et al. (2021, 3).
122 Interview with Matthew Johnson (31 March 2022). Johnson likens such training to that conducted in surgical teams 

that train to learn close coordination in uniquely demanding environments.   
123 National Academies of Science, Engineering, and Medicine (2022, 63). 
124 Chandler (2021).
125 Zhang et al. (2020, 4–5).
126 Development, Concepts and Doctrine Centre (2018, 47).
127 National Academies of Science, Engineering, and Medicine (2022, 67).

This is prompted by the expectation that with 
increased levels of autonomy in weapon  
systems, humans and AI systems will coordi-
nate to perform high-complexity tasks as  
an integrated unit. Training in this context 
cannot be limited to transfer of knowledge 
and it will increasingly entail training together. 
This implies that the two sides will interact as 
‘peers’, each contributing their own exper-
tise and authority to take action.121 In  
this case, the aim of human–AI training will 
need to be focused on working together and 
learning about one another.122

This entails two major shifts in training com-
pared to human–human team training:123   

➔	 perceptual changes, which refer to  
issues such as bias,124 trust and verifi-
ability (an inherent challenge for AI  
systems), which humans expect and 
demand of AI systems, and which can 
lead to negative bias towards AI;125 and 

➔	 procedural shifts, which include new 
methods of taskwork and teamwork 
training, including a need for designing 
appropriate simulation-based training 
in both live and synthetic environments.126

This brings additional requirements for the hu-
man operator who needs to understand  
1) their role; 2) the AI system; 3) how to interact 
with the AI system/teammate; and 4) how to 
interact with the other human teammates. 127  

Research in this field is in its early stages but 
will be critical if and when existing approaches 
to teaming and training cannot support the 
full scale of complexity brought by the intro-
duction of more autonomous functions. 
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Box 3. ‘Human–AI teaming’, anthropomorphism, and Guiding Principle (i)

The use of concepts such as ‘peers’ or ‘teaming’ in relation to AI systems (which evokes  
anthropomorphism) in technical literature does not situate innate systems on par with  
humans in terms of accountability and legal responsibility. Rather, the purpose is to underline 
the fact that with more autonomy comes more complexity and interdependence in human–
machine interaction, and that training together is the only way to understand the system, 
build trust, achieve effective human–systems integration, and calibrate expectations. The 
SIPRI/ICRC Report “Limits on Autonomy in Weapons Systems” makes the point that the  
insistence on the concept of human–machine teaming in strategic documents indicates that 
the military wants to ensure that humans continue to exert agency and control over AWS.128

However, this arguably remains a point of consideration for the GGE on LAWS, which does 
not promote the use of anthropomorphic language (See Principle (i) of the Guiding Princi-
ples) in crafting policy measures for weapons systems based on emerging technologies in 
the area of LAWS. Even as the technical community employs words such as ‘teaming’ as 
metaphors (rather than assigning agency to autonomous systems), it is important to consid-
er how the technical usage of anthropomorphic language is not interpreted in a way that 
would violate this principle. 

 The GGE could benefit from further elaboration on: 

1. whether it needs to further qualify and elaborate on the principle in light of the framing 
of human–machine interaction emerging from technical scholarship; and

2. how to ensure that antropomorphic language is not misinterpreted and that it does not 
complicate understandings of legal responsibility and accountability. 

128 Boulanin et al. (2020, 17).
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The ‘black box’ nature of intelligent sys-
tems129 complicates the interaction with the 
end user and can result in inaccurate mental 
models, creating either too little or too much 
trust.130 Efforts to make AI more transparent 
and explainable have proliferated in recent 
years as it has become increasingly recog-
nized that AI’s opacity negatively impacts 
trust in the system and its decision-making 
mechanisms. 

An explanation system embedded in an inter-
face could theoretically mitigate some of 
these risks during the use of an AWS but 
there are many challenges (and even poten-
tial drawbacks) with the existing available 
methods.  

Explainable AI (XAI) is the field focused on the 
understanding and interpretation of (the  
behaviour of) AI systems.131 Explainability is  
different from transparency as explainability 
evaluates the system’s processes in a back-
ward-looking manner, meaning it is looking 
into what the machine did and provides post 
hoc explanations. Display transparency, in 
contrast, provides real-time understanding  
of the system’s actions. While in a military  
operational setting, transparency is arguably 
more valuable in supporting decision-making 
in real time, both explainability and trans- 
parency are important in building SA. Explain-
ability, when time permits, can improve review 
processes and the mental model of a system, 
which can impact future SA.132 

5. AI explainability and transparency 

Box 4. Explainability and interpretability

Explainability and interpretability are very closely related, and often used interchangeably, 
although the two concepts are different. 

Interpretability is the ability to present outputs in terms that are understandable to a 
human.133 It refers to the quality of a system to provide enough data for a human to be 
able to predict an outcome. 

Explainability refers to “the internal logic and mechanisms that are inside a machine 
learning system”134 and the ability to explain those mechanisms in human terms. 

An interpretable model means that the input-output relationship can be formally deter-
mined but it does not necessarily entail that humans can understand its underlying pro-
cesses.135 This subtle difference reflects a question in XAI research of whether a model 
of explanation should be aligned to human understanding or to the machine’s model.136 

129 ‘Black box’ models refer particularly to machine learning and deep learning. There are also ‘white box’ or ‘glass box’ 
models, which produce more easily explainable results (such as linear models) but they are far less powerful  
compared to black box models. The trade-off between high performance and the model’s “ability to produce  
explainable and interpretable predictions” continues to define AI. Linardatos et al. (2021, 1). 

130 Sartori and Theodorou (2022, 4).
131 Linardatos et al. (2021, 2). 
132 National Academies of Science, Engineering, and Medicine (2022, 33). 
133 Doshi-Velez and Kim (2017, 2).
134 Linardatos et al. (2021, 3).
135 See Gilpin et al. (2019); Mueller et al. (2019, 85).
136 Interview with Mennatallah El-Assady (8 April 2022).
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137 Hulstaert (2018). It is important to note that LIME has been shown to be at times unreliable.  
138 Mueller at al. (2019) provide an extensive literature review of XAI studies and interfaces. 
139 Beauxis-Aussalet et al. (2021, 10).
140 National Academies of Science, Engineering, and Medicine (2022, 35).
141 Mueller et al. (2020); Mueller et al. (2019, 99).
142 Mueller (2019, 95).

5.1. XAI dashboards and their limitations 

Most approaches to XAI have concentrated 
on visualization techniques through inter- 
faces and dashboards that display parts of 
the AI process. For example, explanation  
interfaces can range from dialogue boxes 
and graphical representations in the form of 
a pie chart that shows probability, to inter- 
active interfaces where users can interact 
with the system by selecting the best algo-
rithm out of several.138

Visualization can help to foster more trust  
in the AI system, as well as more human 
agency.139 Studies have shown, for example, 
that providing information related to the  
system’s uncertainty improved performance, 
including performance of human take-over 
from the system.140

Box 5. LIME (Local Interpretable Model-Agnostic Explanations)

LIME is one of the most popular interpretability techniques for black box systems. LIME  
provides local interpretability by perturbing one local dataset (such as by tweaking values) 
and observing how the output changes. The output of LIME comes in the form of a list of 
explanations reflecting how each feature contributed to the prediction.137 

Box 6. Criteria of XAI

An underlying challenge in XAI is that it is often unclear what criteria of ‘explanation’ and 
‘explainability’ it rests upon. In order words, what does it mean for a system to be explain-
able? What exactly should an explanation be about? Or what is the benchmark for assessing 
an explanation is optimal or satisfactory enough?  

Evaluating measurement standards for XAI is the subject of ongoing research. Examples of 
some groupings of measurement criteria include: 

• ‘explanation goodness’, which evaluates properties and elements of an explanation that 
make for a good explanation—they should be complete, logical, incremental, ‘non-over-
whelming’, etc.;141   

• performance improvement, which analyses measurements as to what extent the expla-
nation enables the operator to use the AI in their work to achieve their objectives or to 
make predictions; 142 and

• impact on user’s understanding/mental model of a system. 
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143 Spinner et al. (2019).
144 Interview with Mennatallah El-Assady (8 April 2022).
145 Beauxis-Aussalet et al. (2021, 7–8).
146 Hoffman et al. (2018, 16).
147 van der Waa et al. (2021, 4).
148 Holland Michel (2020, 17); see also Kunze et al. (2019);  Poursabzi-Sangdeh et al. (2021).
149 National Academies of Science, Engineering, and Medicine (2022, 35).
150 Interview with Matthew Johnson (31 March 2022). A similar point was made by Mica Endsley (interview 15 March 2022).
151 Interview with Mennatallah El-Assady (8 April 2022).

While the ‘XAI Pipeline’ includes a multitude 
of ML models and visual analytics methods,143 

they still present a high degree of complexity, 
which makes them mostly comprehensible 
to ML experts only.144 Other limitations of XAI 
include that:  

➔	 trust is not a solely technical problem—
it is a dynamic process, and visualiza-
tion cannot address all problems relat-
ed to trust;145  

➔	 explanations can reinforce flawed 
mental models, they can overwhelm 
people with details or include too many 
loose ends,146 they can be persuasive 
tools in cases where further verifica-
tion may be needed (and thus lead to 
situations of over-trust), and they can 
be interpreted differently by different 
users;147 and

➔	 in combat situations, some explaina- 
bility tools may in fact increase work-
load in high-intensity operations, such 
as when an operator has a limited 
amount of time to review a system’s 
explanation.148

5.2. XAI and autonomous weapon systems 

While more transparent and explainable  
systems should be preferred to black boxes, 
it is important to bear in mind that explain-
ability is not a silver bullet for enhancing trust 
and poorly implemented methods can be 
counterproductive. In the case of AWS, much 
more research is needed to define the best 

methods for system transparency and types 
of transparency information, including infor-
mation across classes of operations.149 This 
becomes clear, for example, when consider-
ing some options proposed previously which 
would have interfaces display elements, such 
as percentages of probability (e.g., 87%  
probability that X is a legitimate target) to the 
user as a method to enhance trust in the  
system. Such an approach can add, in fact, 
further difficulties to the human operator’s 
decision-making process, and does not 
amount to much else than an “AI that mimics 
a relationship with the human via numbers”,150 
without meaningfully reassuring the oper- 
ator. Is 87% probability enough to proceed 
and engage a target? What does the remain-
ing 13% mean? Furthermore, should the  
information be presented as ‘87% certainty’ 
or as ‘13% uncertainty’? 

Other dilemmas arise too in the context of a 
hypothetically fully transparent and explain-
able AI, which could mean that now the onus 
in case of error falls entirely on the human 
operator. This scenario risks introducing a 
disproportionate amount of responsibility 
and accountability for the human operator(s), 
given that AI cannot be held accountable  
because no such mechanisms exist.151 

The future development of XAI methods, 
though not without promise, need to be care-
fully crafted and integrated into systems so 
as to effectively facilitate human–machine 
interaction in order to enhance human trust 
and human control. 
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Human–machine interfaces in AWS are im-
portant for the exercise of human control but 
there are significant challenges and consider-
ations of design and use before that possibil-
ity of control is meaningfully afforded to the 
operator. 

This report has unpacked several aspects of 
human–machine interfaces, while integrating 
the discussion in the context of autonomy 
and human–machine interaction. It used sev-
eral insights from the autonomous vehicles 
industry, where considerations of controlla-
bility have advanced significantly in the past 
decade. 

General conclusions 

➔	 The study of HMIs, as subsystems of 
AWS, reveals the complexity of human 
control—as an ability embedded 
through interface design, cultivated 
through the process of training, and 
aided (or compromised) by specific 
technological properties (e.g., XAI).    

➔	 The introduction of autonomous func-
tions and AI, particularly ML, in weap-
on systems, expands the options and 
modalities for human–machine inter-
action; it renders the design and devel-
opment of human–machine interfaces 
highly complex, which translates into 
the need for new kinds of training of 
human operators. 

Interface design 

➔	 Since the 1950s, approaches to inter-
face design have evolved from techno- 
logy- to user/human- to interaction/ 
human–AI teaming-centred, reflecting 
the scaling up of autonomy and auto- 
nomous functions. 

➔	 It is important for the GGE on LAWS to 
consider what these paradigms mean 
from a policy perspective as they go  
beyond technical upgrades and reflect 
deeper shifts in human–machine inter-
action, with direct implications for human 
control. 

Training 

➔	 Training of human operators, an im-
portant element for human control, 
comes with new challenges in the  
context of autonomy in AWS, and as 
interfaces become more complex.

➔	 Training requires a clearer understand-
ing of AWS limitations, functional allo-
cations, and system failures, and it 
must address common behavioural 
factors (e.g., complacency) while main-
taining a clear understanding of res- 
ponsibilities and accountability. 

Explainable AI 

➔	 While touted as a way of mitigating 
risks of mistrust in the technology by 
introducing more understandability 
and predictability, XAI remains a limited 
solution for the inherent transparency 
and explainability problems of auto- 
nomous systems. UNIDIR’s future  
research will tackle this topic in greater 
detail.  

➔	 Efforts towards more explainability 
and transparency in AI-enabled sys-
tems must be pursued with due con-
sideration for military demands across 
classes of operations, contexts, and 
needs of users.  This must be accom-
panied by thorough research on inter-
face design that best represents the 
transparency information and the sys-
tem’s brittleness, in order to calibrate 
expectations and to enhance trust in 
the technology.  

Conclusions 
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Policy recommendations  

This report suggests that the ongoing and  
future work of the GGE on LAWS should aim to: 

Conduct thorough and granular discus-
sions of issues pertaining to human–
machine interaction in the context of 
autonomy, and the role of interfaces in 
human control. This should include the 
interconnected aspects of interface  
design and personnel training in the  
context of intelligent systems, issues of 
explainability of AI systems, and trust in 
the technology. 

Articulate more clearly the expecta-
tions and objectives related to human 
control that should guide future devel-
opment of interfaces for AI systems. 
The Group’s deliberations have been in-
strumental in framing the issue of human 
control to the technical community, but 
more elaboration is needed to ensure 
that the meaning of human control is 
more clearly defined, and relevant across 
types of weapons systems and opera-
tional contexts. 

Discuss the implications of human–AI 
teaming for human control over AWS. 
The metaphor of ‘teaming’ does not  
denote an equal status between humans 
and AI systems, and maintains that  
humans ‘remain in charge’; however, it 
does prompt new questions about the 
meaning of human control. Inputs from 
technical experts are essential in explor-
ing the implications and challenges of 
this paradigm.



UNIDIR28

Report of the 2019 session of the Group of Governmental  
Experts on Emerging Technologies in the Area of Lethal  
Autonomous Weapons Systems

 
CCW/GGE.1/2019/3 

25 September 2019

21. On the agenda item 5 (c) “Further consideration of the human element in the use of lethal 
force; aspects of human-machine interaction in the development, deployment and use  
of emerging technologies in the area of lethal autonomous weapons systems” the Group  
concluded as follows: 

Human responsibility for the use of weapons systems based on emerging technologies in the 
area of lethal autonomous weapons systems can be exercised in various ways across the 
life-cycle of these weapon systems and through human-machine interaction.

23. On the agenda item 5 (d) “Review of potential military applications of related technologies 
in the context of the Group’s work” the Group concluded as follows: 

(…)

(b) Risk mitigation measures can include: rigorous testing and evaluation of systems, legal  
reviews, readily understandable human-machine interfaces and controls, training personnel, 
establishing doctrine and procedures, and circumscribing weapons use through appropriate 
rules of engagement;

Annex IV 
Guiding Principles

(c) Human-machine interaction, which may take various forms and be implemented at various 
stages of the life cycle of a weapon, should ensure that the potential use of weapons systems 
based on emerging technologies in the area of lethal autonomous weapons systems is in com-
pliance with applicable international law, in particular IHL. In determining the quality and extent 
of human-machine interaction, a range of factors should be considered including the opera-
tional context, and the characteristics and capabilities of the weapons system as a whole; 

(g) Risk assessments and mitigation measures should be part of the design, development, 
testing and deployment cycle of emerging technologies in any weapons systems;

Excerpts related to human–machine interaction and human control from GGE on LAWS Reports 

Annex A
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Group of Governmental Experts on Emerging Technologies  
in the Area of Lethal Autonomous Weapons System 

Chairperson’s Summary 

Advance Copy

CCW/GGE.1/2020/WP.7 

19 April 2021

A. An exploration of the potential challenges posed by emerging technologies in the area of 
lethal autonomous weapons systems to international humanitarian law

1. Summary of inputs and exchanges 

9. Some States have already enacted national legislation to ensure a human is always account-
able for decisions on the development and use of weapons. On guiding principle (d), various 
measures could promote accountability, including rigorous testing and training, establishing 
procedures and doctrines, and using the weapon system in accordance with established  
training, doctrine and procedures. […]

C. Further consideration of the human element in the use of lethal force; aspects of  
human-machine interaction in the development, deployment and use of emerging techno 
logies in the area of lethal autonomous weapons systems

1. Summary of inputs and exchanges

27. States should ensure that the use of force must reflect human agency and human intention 
and that the judgements required to authorize the use of armed force must be made by humans. 
Context-specific human decisions are necessary to ensure compliance with IHL. Human opera-
tors, particularly in the chain of command and control, must have sufficient knowledge and  
understanding of a system to be confident that it will function as intended in a particular attack.

28. Human-machine interaction has consistently been highlighted by many as a cornerstone 
on which to build a future operational and normative framework. Many commentaries consid-
ered that guiding principle (c) was of primary importance to the work of the group. Several 
viewed that this principle necessitated further work to determine the type and extent of  
human involvement required in the use of emerging technologies in the area of LAWS. There 
may not necessarily be a “one size fits all” set of parameters for human-machine interaction; 
the requirements for such interaction may instead be dependent on the operational context 
and the weapon system’s characteristics and may need to be determined on a case by case 
basis. One possible objective of human-machine interaction could be to ensure that humans 
retain control of the weapons they deploy and operate and the consequences that result. The 
elaboration of good practices with human-machine interaction that could strengthen compli-
ance with IHL could be valuable. Human-machine interaction may need to be considered at 
every stage of a weapon system’s lifecycle. 
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29. There was significant discussion of the importance of the concept of “human control”.  
Measures based on a concept of human control could require considerations based on the  
specific characteristics of a weapon, on the operational environment, on the time-frame of  
autonomous operation, scope of movement over an area and on human-machine interaction. 
Such measures could also specify: the degree of predictability required in a weapon system’s  
behaviour; the required degree of training and understanding of a weapon system; and the  
ability of a human to deactivate or override the operation of a weapon system. A deactivation 
requirement, however, may go beyond what States require in currently deployed weapons.  
Effective human control, involvement or judgment may not necessarily equate to direct, 
manual control but rather contextual factors including boundaries placed on the weapon and 
environment of use, and requirements for human-machine interaction. [emphasis added]  
Further work is needed within the Group to understand various aspects of human control,  
including the type and extent required for compliance with IHL across all stages of a weapon 
system’s life cycle. The exchange of domestic policies and best practices relevant to this prin- 
ciple could be useful. 

30. The ability to constrain a system through setting boundaries on, among other things, its du-
ration of operation, range of operation and the functions that can operate autonomously, and 
hence determine whether the weapon-system’s use could be lawful, was considered as relevant 
by several delegations. Human operators and commanders need a sufficient understanding of 
the machines they operate and the algorithms that control the machines’ functioning to exer-
cise appropriate judgement and ensure that the use of weapon systems is consistently within 
applicable international law; hence, control may need to be fully informed to be effective. There 
also needs to be an understanding of the operational environment. Human control/involvement/
judgement might be contingent on the ability to intervene in the operation of a weapon, once 
activated, though there might also always be a point after which human intervention in a  
weapon’s operation was not possible. Finally, it was noted that human control/involvement/
judgement needed to be reasonably temporally proximate to an attack, to remain valid. 

2. Possible elements for consensus recommendations 

31. Taking into account the guiding principles and the conclusion of the group on agenda item  
5 (c) of its report CCW/GGE.1/2019/3, paragraph 21, the group considered the following  
elements as a possible basis for consensus recommendations in relation to the clarification, 
consideration and development of aspects of the normative and operational framework on 
emerging technologies in the area of lethal autonomous weapons systems:

(a) Human responsibility for the use of weapons systems based on emerging technologies in the 
area of lethal autonomous weapons systems can be exercised in various ways across the life- 
cycle of these weapon systems and through human-machine interaction. 

3. Areas for possible future work with a view to arriving at additional elements for consensus 
recommendations 

32. The group could pursue further work on the development of criteria on human control  
necessary to ensure that the use of emerging technology in the area of LAWS can be limited as 
required by IHL, including through: (i) operational constraints on the weapon system, (ii) environ-
mental and temporal constraints bounding the operation of the weapon system, and  
(iii) standards of human-machine interaction, to ensure that all uses of force are meaningfully 
directed by human operators and commanders. 

33. The group could examine methods for assessing the adequacy of constraints and safe-
guards for ensuring effective human control, involvement or judgment over the employment of 
weapons based on emerging technologies in the area of LAWS.
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b) Risk mitigation measures can include: rigorous testing and evaluation of systems; legal  
reviews; readily understandable human-machine interfaces and controls; training personnel;  
establishing doctrine and procedures; and circumscribing weapons use through appropriate 
rules of engagement.

F. Consensus recommendations in relation to the clarification, consideration and develop-
ment of aspects of the normative and operational framework on emerging technologies  
in the area of lethal autonomous weapons systems

[…]

43. In its work, the Group considered elements in relation to the clarification, consideration and 
development of aspects of the normative and operational framework: 

D. Review of potential military applications of related technologies in the context of the 
Group’s work 

[…]

2. Possible elements for consensus recommendations

37. Taking into account the guiding principles and the conclusions of the group on agenda item 
5 (d) of its report CCW/GGE.1/2019/3, paragraphs 23 (a) to (c), the group considered the follow-
ing elements as a possible basis for consensus recommendations in relation to the clarification, 
consideration and development of aspects of the normative and operational framework on 
emerging technologies in the area of lethal autonomous weapons systems: 

[…]

(a) Possible elements that address the normative aspects of the framework can provide clarity 
regarding how principles and rules of applicable international law, including IHL, apply to emerg-
ing technologies in the area of lethal autonomous weapons systems. These could include: the 
applicability of IHL to States, parties to armed conflict and individuals and their responsibility for 
adhering to obligations under IHL; the necessity to apply IHL requirements and principles 
through a chain of command by humans; the necessity for comprehensive, context-based  
human judgement to ensure compliance with IHL; the applicability of legal reviews of new  
weapons to emerging technologies in the area of lethal autonomous weapons systems; the 
specification that it is inherently unlawful to use weapon systems that cannot reliably or predict-
ably perform their functions in accordance with the intention of a human operator and  
commander to comply with IHL requirements and principles; and that weapon systems based 
on emerging technologies in the area of LAWS that cannot be used in compliance with IHL 
should be specifically prohibited; 

(b) Possible elements that address the operational aspects of the framework can specify how 
States should implement principles and rules of IHL with respect to emerging technologies in 
the area of lethal autonomous weapons systems, as well as how they should cooperate towards 
this end, could include: ensuring individual responsibility for the employment of weapons  
systems based on emerging technologies in the area of LAWS; ensuring that a human operator 
or commander exercises judgement over attacks, including through certain operational  
constraints on weapon characteristics and environment of use, and requirements for  
human-machine interaction; […].
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Group of Governmental Experts on Emerging Technologies  
in the Area of Lethal Autonomous Weapons System

Geneva, 3–13 August, 24 September–1 October  
and 2–8 December 2021 

Report of the 2021 session of the Group of Governmental Experts 
on Emerging Technologies in the Area of Lethal Autonomous 
Weapons Systems

CCW/GGE.1/2021/3

22 February 2022

II. Application of international law

General commitments

26. States should commit to exercise appropriate human involvement throughout the 
life-cycle of the weapons system that is sufficient to ensure human judgment and control 
necessary in the circumstances to comply with international humanitarian law over the use 
of all other types of weapons systems based on emerging technologies in the area of lethal 
autonomous weapons systems. This may include, but is not limited to:

(a) Limits on the type of target; 

(b) Limits on the duration, geographical scope and scale of use;

(c) Requirements for human–machine interaction and necessary intervention or deactivation; or
(d) Clear procedures to ensure that human operators are informed and capable 
       of controlling the weapon systems.

Human-machine interaction

29. The following specific practices in human-machine interaction may contribute to the imple-
mentation of international humanitarian law, effective accountability and the mitigation of risks 
posed by weapon systems based on emerging technologies in the area of lethal autonomous 
weapon systems:

(a) Human commanders and operators make decisions about the deployment and use of 
weapons systems based on emerging technologies in the area of lethal autonomous 
weapons systems with information reasonably available at the time to ensure that force 
will be used in accordance with international law, including information about the potential 
targets, the capabilities and characteristics of the weapon to be used and the context in 
which the weapon is deployed.

(b) Human commanders and operators should be able to properly assess the effects of us-
ing a weapons system based on emerging technologies in the area of lethal auto- 
nomous weapons systems prior to use.  [emphasis added]

(c) Human commanders and operators and other relevant personnel are trained, to  
ensure that the weapons systems based on emerging technologies in the area of  
lethal autonomous weapons systems are deployed and used in conformity with interna-
tional humanitarian law. [emphasis added]
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Risk mitigation

40. Risk mitigation measures to help minimize incidental loss of life, injuries to civilian and  
damage to civilian objects resulting from the use of weapons systems based on emerging tech-
nologies in the area of lethal autonomous weapons systems may include, inter alia: (a) incorpo- 
rating self-destruct, self-deactivation, or self-neutralization mechanisms into weapon systems; 
(b) measures to control the types of targets that the system can engage; (c) measures to control 
the duration and geographical scope of the weapons system; and( (d) clear procedures for 
trained human operators to activate or deactivate functions in weapons systems. [emphasis 
added]
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