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KEY TERMS

Dataissues errors or problems in the data that an autonomous system
receives during an operation.

Vulnerability a flaw in an autonomous system that causes it to fail when it
encounters a certain data issue.

Failure occurs when an autonomous system does not exhibit the

desired behaviour.

Known unknowns

vulnerabilities that exist in an autonomous system but were
not specifically identified in advance.

Brittleness

an autonomous system’s tendency to fail when encountering
inputs for which it was not specifically designed or tested.

Robustness

an autonomous system’s ability to perform as desired when
receiving inputs for which it was not designed or tested.

Uncontrolled environments

environments where the precise conditions to which the sys-
tem is subjected cannot be tightly managed by human op
erators — in contrast with, for instance, a laboratory setting
where conditions (such as physical features of the space,
temperature, lighting, presence of other systems) are tightly
controlled.
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“THE INTELLIGENCE IS IN THE DATA,
NOT THE ALGORITHM.”
- HAUGH ET AL. (20181

All autonomous systems run on data. Indeed, one way to think of “autonomy” is as a process by
which machines respond to data inputs from their environment with a corresponding output
or action, without any human direction. If there are issues with these data inputs, autonomous
systems can exhibit suboptimal performance or fail.

In the real world, data are never perfect. More importantly, they are imperfect in complex and
unpredictable ways. Autonomous systems encountering data issues may likewise fail in a com-
plex and unpredictable manner. As a result, autonomous system failures arising from data is-
sues could be both inevitable and impossible to anticipate; these are the “known unknowns”.
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INTRODUCTION

The vagaries of data are central to the ongoing
discussion among policymakers about the harms
that could arise from the use of autonomous
weapon systems (AWS) and other forms of military
artificial intelligence (Al). To be sure, it has been
posited that autonomous systems could poten-
tially exhibit better performance in certain tasks
than traditional means or methods of warfare,
leading to areduction in some kinds of unintended
harm. But because data issues canresultin auton-
omous system failures that could increase harm,!
such issues are relevant to deliberations over
whether such technologies could “perform tasks
as expected or be capable of being used in ac-
cordance with [international humanitarian law]”.2

Data issues and the failures they cause are also
entwined with any notion of direct or indirect
human control or judgment, a fundamental
principle for the use of all lethal autonomous
weapons. In any military operation, the pos-
sibility of system failures must factor into the
human decision on whether and how to use such
weapons.2 Furthermore, the ability of autonomous
systems to adhere to the constraints or guard-
rails that their human operators set for them?
will, itself, depend on reliable data. More funda-
mentally, although humans could exercise forms
of control over autonomous systems throughout
all the stages of their development and use,® one
can never fully control the real-world data that
these systems depend on to function properly and
reliably. Indeed, though it is difficult, as many have
pointed out, to anticipate exactly what form auton-
omous weapons will take in future, these systems
will always contend with data that are problematic
and unpredictable.

1 Scharre (2016, 5).
2 GGE on LAWS (2019, annex IV).

As such, any potential future policy related to
human control,the application of international law,
or the “operationalization” of the GGE’s guiding
principles, will likely have to account for data
issues. But by and large, discussions in this policy
domain still lag behind the science of the matter.®

This report is provided for the policy community
to advance the state of understanding of these
issues and their implications in discussions on au-
tonomous weapons and military Al. It is based on
interviews with technical, military and legal subject
matter experts, as well as an extensive review of
the relevant academic and policy literature.

The report finds that in order to perform as
desired, autonomous systems must collect data
that are complete, relevant, accurate and of
high quality; most importantly, these data must
not differ from the data for which a system was
developed and tested. But conflict environments
are harsh, dynamic and adversarial, and there will
always be more variability in the real-world data of
the battlefield thanin the limited sample of dataon
which autonomous systems are built and verified.
Because they are complex systems, autonomous
weapons encountering such unavoidable data
issues could likewise fail in a complex and unpre-
dictable manner. As such, all autonomous systems
will be prone to inevitable accidents which cannot
be foreseen. We know that the potential for such
accidents exist either now or will emerge in the
future, but we cannot characterize or specifical-
ly anticipate them. One might call such issues
“known unknowns”.

3 GGE on LAWS (2020, 4) states that “an effective response to the risks posed by autonomous weapon systems, thus, may require consideration
of what ‘quality and extent’ of human control/involvement/judgment is necessary”.

4 GGE on LAWS (2020, 4) notes that “there is an emerging consensus [among States]...that limits on emerging technologies in the area of
[lethal autonomous weapons systems] are required in order to ensure compliance with [international humanitarian law] and other

applicable law”.
5 GGE on LAWS (2018, 15).

6 While the relevant policy forums have visited the issue of data repeatedly (particularly with respect to bias and adversarial hacking), data
issues take a much broader variety of forms and have a broader set of implications than those areas of focus. GGE on LAWS (2019,

3,5); GGE on LAWS (2020, 7).
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These technical realities have potentially profound
implications. International law requires States
employing autonomous weapons to anticipate
and respond to data issues that could cause un-
intended harm. A variety of complex interrelated
factors determine the degree to which States
could address such issues. More fundamentally,
the ability and thus responsibility to mitigate or
account for the potential harms arising from data
issues hinges on whether these issues are known
or unknown. The fact that some autonomous
system vulnerabilities are “known unknowns”
could create ambiguity as to responsibility for un-
intended harm resulting from such issues.

Data issues could therefore pose a novel
challenge to the responsible, legal and hu-
man-centric employment of autonomous military
systems. In Chapter 5, the report examines the
variety of approaches that have been proposed
to address this challenge. In the Conclusion, the
report recommends five avenues for action to
help bolster these and other potential measures
and efforts. Specifically, the report calls for col-
laborative, science-based action relating to:

> Legal reviews

> Classification of autonmous systems
accidents

> Knowledge-sharing between States

> Understanding and modelling of the
effects of adversarial countermeas-
ures against autonomous systems

> Consideration of autonomous weapon
systems as system-of-systems technology
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1. COMMON DATA ISSUES

Autonomous systems rely on the data they collect
in order to navigate,” interpret, respond to and
manipulate their environment. Data are also the
medium by which they receive human control,
monitor their own internal system state and
health,® and determine their progress towards
their goal.® Issues can manifest themselves in
any of the data that underpin these essential
functions. These issues either arise naturally or as
a result of intentional adversarial measures.

Broadly speaking, these issues can be categorized
as incomplete data, low-quality data, incorrect or
false data, and discrepant data (data that differ
from the data the system was designed for). This
chapter provides a brief overview of each of these
types of data issue.

While autonomous systems can, of course, be
expected to handle some kinds of data issues, all
autonomous systems can be expected to have
vulnerabilities to specific or systemic data issues
at some point over the course of their employ-
ment, even when these systems are used exactly
as intended.!® This is especially true of issues that
have not been considered or covered during that
system’s development or testing.

INCOMPLETE
DATA

REAL WORLD DATA

LOW-0QUALITY
DATA

INCORRECT OR
FALSE OARTA

TRAINING DATA

DISCREPANT

DATH

FIGURE 1. Types of common data issues.

7 Hagstrom (2019, 33-34).

8 Atyabi et al. (2020); llachinski (2017, 171); Naval Studies Board (2005, 47).

9 Amodei et al. (2016).

10 Interview with Davide Scaramuzza, 2 October 2020; interview with anonymous expert, 18 September 2020; Cummings (2020a).
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1.1 INCOMPLETE DATA

Data are “incomplete” when information that is
necessary for an autonomous system to take an
appropriate action are not present in that data,*
either because the source of the data is blocked
or because the autonomous system lacks the
sensors necessary to detect the information or to
perceive it.'?

Missing data may cause an autonomous system
to misclassify objects and activities or fail to
recognize its progress towards a given goal. Even
when systems have some capacity to perceive
that a data point is missing, they may struggle to
infer what might exist in the gaps in their percep-
tion.3

1.2 LOW-0UALITY DATA

Data can contain errors or ambiguities that result
in suboptimal or inappropriate responses by the
autonomous system.* A data point may not have
sufficient resolution or accuracy, meaning that it
fails to capture the exact characteristics of the
sensed object or phenomenon. Or the quality of
the input from a sensor or data stream may be
degraded as a result of extraneous data points
(known as “noise” or “clutter”) that are irrelevant
to the relevant information (the “signal”). In some
cases, these extraneous data points arise from
the sensor itself (consider, for example, the white
noise on a bad phone line) or because the environ-
ment is cluttered with irrelevant objects surround-
ing the object of interest.

1.3 INCORRECT OR FALSE DATA

Data can be incorrect or false. Such instances
can arise as a result of common faults in the
sensors themselves or in the source of the data.
A badly calibrated!® or faulty sensor'® feeding an
autonomous system might generate an incorrect
measurement (such as the size, shape or speed
of a target), or a human-generated data feed
may include errors (incorrect numbers, spelling
mistakes, incorrect formatting, etc.).” Incorrect or
false data may likewise arise from intentional ad-
versarial actions that are intended to “fool” auton-
omous systems into making an erroneous output
(see Section 2.2).

1.4 DISCREPANT DATA

Autonomous systems today are liable to fail when
there is inconsistency between the data they
are designed and developed for and data they
encounter in actual use.!®

Systems may encounter one-off inputs or unique
combinations of inputs that fall outside the total
spectrum of possible inputs that the system was
designed for; these are known as anomalies,'®
“edge cases” or “corner cases”.?° Other inputs
may be discrepant in the sense that they do not
fit neatly within the structured categories that
human designers code Al systems to recognize or
respond to.2

In other cases, such discrepancies may be
systemic. This happens when a system is
deployed in a place or a manner for which it was
not designed?? or when the system’s development

11 Interview with Davide Scaramuzza, 2 October 2020; interview with anonymous expert, 15 October 2020; interview with anonymous expert,
21 October 2020; interview with anonymous expert, 6 November 2020.

12 Schwarz (2018).

13 A classic challenge in the development of automated object tracking algorithms - which can be used, say, for tracking an enemy aircraftina
dogfight - is ensuring that the algorithm does not lose track of the object when it momentarily disappears from view. Pan & Hu (2007).

14 For a foundational discussion of data quality, see Wand & Wang (1996).

15 Jain et al. (2019).

16 Per Bagchi et al. (2020), sensor faults arise naturally as a result of bugs, ageing and other unavoidable environmental factors.

17 Cole (2019, 30); Gates & Baker (2019).
18 Amodei et al. (2016, 16); Lohn (2020a); Taori et al. (2020, 1, 8).

19 For a technical, statistics-focused discussion of different types of anomaly, see Chandola et al. (2009, 7-8).

20 One of the reasons that the training data sets used to “teach” machine-learning systems must be very large, and why physical testing must
be extensive, is to reduce the likelihood that the system will encounter something it was not trained for (See Annex ). Gershgorn (2017).

21 For example, a system trained to distinguish between trucks and tanks may struggle with an armoured personnel carrier that exhibits
characteristics of both categories. Llorens (2020); Schwarz (2018).

22 This phenomenon is known as “transfer context bias”. Danks & London (2017, 4694); UNIDIR (2018, 4).
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process has failed to accurately and fairly capture
key characteristics of the intended environment.
(For example, many instances of “biased Al” arise
because a particular demographic group was
under- or mis-represented in the system’s training
data.z3)

While autonomous systems could be developed
to be more tolerant of issues like incomplete
data, low-quality data or false data, they will only
be robust to those issues that were specifically
accounted for in their development or training.
Any issues that were not covered in a system’s
development could still cause a failure.

1.5 DATA ISSUE “AWARENESS”

The data issues described in this chapter result
in failures when the autonomous system has not
been developed to account for such issues. In
these cases, the system will not be “aware” that
it is encountering an issue.?* For example, if an
Al system is trained to recognize when an object
is partly hidden, it could be coded to revert to a
failsafe whenever it encounters such instances
of incomplete data. However, in the absence of
any such “awareness”, an autonomous system
will generate what might be described as a “best
guess” attempt at a solution.

That is, if an autonomous system encounters an
unfamiliar object, it will simply misclassify that
object as whatever most resembles it; in practice,
it would be more desirable if it were to label the
object as an “unclassified object”.?> Recent
advances in “hybrid” autonomous systems that in-
corporate multiple types of Al have shown some
potential to address the problem (see Annex ll),
but this remains an open research field.?®

23 For a detailed discussion of types of algorithmic bias and their implications for autonomous weapons, see UNIDIR (2018). For a discussion
of the ethical implications of Al bias, see Buolamwini & Gebru (2018, 11-12); Grother et al. (2019). Note that not all biases in algorithmic
models are “bad”. Indeed, all such models must be embedded with certain biases to function properly. See Hellstrom et al. (2020);

Krishnamurthy (2019).
24 Interview with anonymous expert, 6 November 2020.

25 For this notion of “reasoning”, see Cummings (20204, 4-5). This is also why certain adversarial examples would only be effective against
automated systems and not humans. For example, in the case of physical visual spoofing (see Figure 4) the “disguises” that have proven
effective against computers may be easily detectable by humans. Though other anomalies (such as the addition of subtle noise to large
data sets) may be very hard for humans to perceive. See Haugh et al. (2018, 2-3); Lohn (2020b, 11-12).

26 Interview with Maria Vanina Martinez, 2 November 2020.
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c. CAUSES OF DATA ISSUES

Compared with the controlled, often digital, envi- 2.1 HARSH CONDITIONS
ronments where Al has proven itself so far - such

as social media, finance, insurance, medicine, man- In warfare, autonomous systems will be subject to

ufacturing and gameplay - “uncontrolled” conflict  pjjenging environmental factors that will inhibit
environments pose a wide range of challenges  the collection of reliable and consistent data.
to the collection of complete, true, high-quality,

non-discrepant data.?” This is because all such ) pyst smoke, vibrations, contaminants, kinetic

conflict enviroqments are harsh, adversarial, effects and adverse weather can obscure or
complex and variable. damage vital sensors and the instruments and
subsystems with which they interact.?®
> Natural wear and tear can degrade sensor
inputs.?®
> Objects or data points of interest may rarely
appearinthe full view or range of the sensors.3°
> Camouflage and concealment will often

obscure relevant events or objects.

HARSH AOVERSARIAL COMPLEXITY ORIET
conoiTions ACTIONS & VARIABILITY

FIGURE 2. Causes of data issues.

27 Successful Al deployments in simulated settings - for example, the game-playing AlphaGo/AlphaGo Zero/AlphaZero computers, the GPT-3
language generation model, or the automated pilot that beat a human fighter pilot in a series of virtual dogfights - are not an accurate
indicator of the deftness, consistency and reliability with which such systems could excel in military applications. A more accurate
yardstick for the progress of autonomous physical systems is self-driving cars, which - despite billions of research and development
investment and millions of kilometres of testing — remain a long way from fully scaled deployment and integration. Interview with Davide
Scaramuzza, 2 October 2020; interview with Maria Vanina Martinez, 2 November 2020; Cummings (2020c). For more on the challenge
of developing robots that can execute complex strategies in complex environments, see Ibarz et al. (2021).

28 Interview with anonymous expert, 6 November 2020; Defence and Security Accelerator (2019); French et al. (2016).
29 lbarz et al. (2021).
30 Ramisa Ayats et al. (2012, 187).
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2.2 AOVERSARIAL ACTION

In conflict settings, autonomous systems will be
subjected to targeted countermeasures that will
giverise to data issues.

> Belligerents will target autonomous systems
with kinetic effects, causing damage that may
degrade their sensors or data receivers, or
target their sensors specifically.3!

> Signal jamming would block systems from
receiving certain data inputs (especially nav-
igation data) or communications from their
operators3? - a vulnerability for any system
that relies on a human in or on the loop.

> Like any computer-enabled system, auton-
omous systems will also be susceptible to
hacking; “spoofing” attacks, for example,
would replace an autonomous system’s real
incoming data feed with a fake feed containing
incorrect or false data.??

> Belligerents will seek to take advantage of the
brittleness of autonomous systems by simply
modifying their actions3* or “poisoning” the
data in such a way as to generate discrepant FIGURE 3. A demonstration by Goh et al.
inputs for which the system is not designed.® (2021) showing that a sophisticated neural

b Auleneens ssiems vl 256 be e by network could be fooled into misclassifying

a class of adversarial action known as “input
attacks”, which change a sensed object or data
source in such a way as to generate a failure.3®

an apple with a handwritten label.
CREDIT: OPENAI

31 Optical sensors, for example, are susceptible to bright flashes of light from lasers and floodlights, a type of attack known as “dazzling”. Birch
et al. (2015, 18); Tholl (2018).

32 Holland Michel (2020a).

33 GNSS (Global Navigation Satellite System) data spoofing is already a well-studied and routinely employed countermeasure against systems
that rely on GNSS data for navigation. Jafarnia-Jahromi et al. (2012); Kerns et al. (2014).

34 A classic example of this practice is the continuous efforts of email spam creators to devise new formats for their messages that will not
be recognizable to Al spam filters. Kantchelian et al. (2013); see also Herpig (2019, 20). Adversarial actors can also use their exposure
to an autonomous system to train their own “adversarial models” that can, in turn, generate tailored inputs to flummox that system: see
Bagchi et al. (2020).

35 Goldblum et al. (2020).

36 Simple input attacks might seek to confound an autonomous system by disguising a target. A more sophisticated type of attack known as
“adversarial examples” or “evasion” involve adding subtle artefacts to an input datum that result in catastrophic interpretation error by
the machine. See Athalye et al. (2017); Bhambiri et al. (2019); Herpig (2019, 19); Li (2019); Lohn (2020b). Numerous research projects in
recent years have demonstrated the effectiveness of such attacks in causing sophisticated machine-learning systems to misclassify
objects with a high degree of confidence, in some cases without changing the datum so much that it would appear tainted to a human
reviewing the input. Such attacks can either be developed based on a specific detailed understanding of an autonomous system’s
algorithmic models (this is known as a “white box” attack) or without any understanding of or access to the system’s code or training
data (“black box” attacks).
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More fundamentally, there will always be more
2.3 COMPLEXITY RANO
VARIRBILITY potential variability in a deployed military autono-

mous system’s environment than there was in its
finite development environment.* This means that
some issues will only manifest and cause failures
once the autonomous system is deployed.*?

Warfare environments are extremely complex.3”
The more complex an operational environment,
the greater the degree and diversity of relevant
information a system must take into account32 to
achieve its goals. But the more information the
system requires, the higher the likelihood that
some of that data will be occluded, corrupted
or discrepant. Furthermore, these autonomous . .
machines will be complex systems that rely on an apprquate, bu't ne“\;er pentectidepietion
seamless interaction between multiple types of of an entire popullatlon). .

tightly coupled® sensors, algorithms, actuators > Rule-based coding can only approximate

> The data sets used to train and test ma-
chine-learning systems can only, at best,
capture a statistical approximation of reality
(the same way that a sample survey provides

and human factors - all of which could, in their the subtle and changeable dynamics of real,
own way, be vulnerable to certain kinds of data physical conditions.

issues that in isolation would not result in system

failure.*°

37 Danzig (2018, 7).
38 Cummings (2017, 4).
39 “Coupling” refers to the interdependency of components: in a tightly coupled system, the behaviours of one component directly affect the

components that it interacts with. UNIDIR (2016, 6). Herpig (2019, 31) describes how an attack on a single algorithmic component of a
complex system composed of multiple Al elements could have catastrophic cascading effects throughout the system.

40 Interview with J.F.R. Boddens Hosang, 16 November 2020; interview with Rebecca Crootof, 18 November 2020; Scharre (2016, 13); UNIDIR
(2016, 6).

41 For example, large data sets of training images for automated satellite imagery analysis programs cannot include examples of every single
object as seen from every single angle at which a satellite might observe the object inreal life, and even slight variations in angle between
training images and real-life images have been shown to result in a dramatic drop in accuracy. Weir (2018).

42 Danzig (2018, 7).

43 Interview with Maria Vanina Martinez, 2 November 2020; interview with Davide Scaramuzza, 2 October 2020; Ibarz et al. (2021). Lipton
(2020) suggests that the notion that a statistical distribution actually even exists in the world is flawed, given that distributions are
always changing (see Section 2.4).
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> Real-life testing cannot validate systems
against all potential issues that a complex
autonomous system might encounter in a
complex environment, especially against
issues that are not known to be issues** or the
equally varied possibilities for adversarial in-
terference.*®

2.4 DATA DRIFT

Even if an autonomous system were designed and
tested to fully account for the complexity of the
real world, environments change?*® in ways that
will eventually subject systems to one-off cases or
systematic discrepancies that did not previously
exist.*” This phenomenonis known as “datadrift”.48
Conflict environments are likely to drift constantly.

> Wartime activities physically change the envi-
ronment.*®

> Groups engage in unpredictable behaviour to
deceive or surprise the adversary®° and contin-
ually adjust (and sometimes radically overhaul)
their tactics and strategies to gain an edge.

> Because drift can happen gradually (or, if
adversarial, covertly), it may be difficult to
detect.!

> Conversely, sudden unanticipated tectonic
shifts - for example, the emergence of awholly
novel military tactic for which an autonomous
system was not developed or designed - can
render whole classes of system ineffective.>?

FIGURE Y. /nasetof simulated dogfights be-
tween an expert human pilot and an Al “pilot,”
the machine won 5-0. However, this system
was operating in a controlled simulated en-

vironment. Real-world uncontrolled environ-
ments will prove much more challenging for
autonomous systems.

CREDIT: DEFENSE ADVANCED RESEARCH PROJECTS AGENCY.

44 Interview with Davide Scaramuzza, 2 October 2020; interview with anonymous expert, 18 September 2020; interview with anonymous

expert, 21 October 2020.
45 Herpig (2019, 29, 35).

46 Thisvariesin part depending on the nature of the objects or phenomena to which asystemis responding. One anonymous expert (interviewed
15 October 2020) described three types of data: static (such as geographical features), highly predictable (such as crowd dynamics or
group behaviours) and highly unpredictable (such as objects and signals in a contested battlespace with active denial, deception and

subterfuge.)

47 Certain Al models may be particularly sensitive to such changes, particularly if they rely on the presence of a single environmental factor to
achieve a desired output or if a new factor that the model does not take into account becomes influential for the operation. Rabanser et

al. (2019,1-2, 5).
48 Sculley et al. (2014); Shendre (2020).
49 Bagchi et al. (2020).
50 Danzig (2018, 7); Greene (2006, 440-41).

51 For a discussion of the challenges of drift detection in a security context, see Nelson et al. (2014).

52 Forexample, in the early days of the COVID-19 pandemic, sudden systemic shifts in online consumer behaviour (such as drastic unanticipated
spikes in searches for “face masks”) stumped the predictive algorithms of several online retailers. Heaven (2020).
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3. DEFINING Known unknowns

Because of the inescapable causes of data issues
discussed in Chapter 2, autonomous system
failures are infinitely possible®3 - even, in a certain
sense, inevitable.®* Issues that cause failures
come to be known®® through the development
of the weapon, the testing and legal review of
that weapon, and that system’s previous track
record®® (see figure 6). Modern militaries have a
wide range of tools for quantifying and accounting
for risks in complex systems,®” and these sources
of knowledge about the system will provide

decision makers with ample information about
the potential risks of deploying a given system in
a given context.>8

However, such issues are just a subset of all the
actual issues a system might encounter in the
real world.®® It is impossible to know every single
vulnerability that any given autonomous system
might have or predict every single relevant data
issue that such systems will encounter.t® As such,
all autonomous systems will be prone to inevitable

unknown
ISSUES

Known
ISSUES

FIELD EXPERIENCE

FIGURE 5. Development, testing, and field experience make previously unknown issues known
to the owner of autonomous systems. But these known issues are still only ever a subset of all
the issues that are latent in that system.

53 Carvin (2017, 2).

54 Or, put more bluntly, “An Al designed to do X will eventually fail to do X”. Yampolskiy (2020). For a list of Al failures, many of which were
sparked by issues described in Chapter 2, see Narayan Banerjee & Sekhar Chanda (2020); Yampolskiy & Spellchecker (2016, 1-2, 4-5).

55 For more on the idea of making “unknown” issues “known,” see Kim (2012).

56 However, as Danzig (2018, 7) notes, this will not apply in cases of weapons that are rarely used.

57 See, for example, Department of the Army (2014). Non-military organizations also employ sophisticated risk assessment models for these

kinds of purposes; see, for example, ECA (2019); MAA (2014).

58 Some militaries will also develop sophisticated tools to categorize these risks, along with extensive protocols to account for them.

59 All technical subject matter experts interviewed for this study affirmed that it is impossible to anticipate all potential Al failures by means
of today’s design, development and testing processes. A plurality of legal and policy experts similarly posited that existing review
processes and mechanisms are likely not equipped, in their present configurations, to anticipate all errors.

60 Interview with Maria Vanina Martinez, 2 November 2020; interview with Davide Scaramuzza, 2 October 2020; interview with anonymous
expert, 18 September 2020; interview with anonymous expert, 21 October 2020; interview with anonymous expert, 6 November 2020;

Pinelis (2020).
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accidents which cannot be foreseen.®! Put simply,
we know that such issues exist either now or will
emerge in the future, but we cannot character-
ize or anticipate them.®? One might call such data
issues “known unknowns”.

All complex weapon systems can have failure
modes that cannot be foreseen. But it is likely to
be harder to anticipate, quantify and characterize
the risks associated with those issues in autono-
mous weapons. This is due to the inadequacy of
present-day testing and verification processes

for Al%3 the difficulty of characterizing Al failure
points, the low relative reliability of Al,%* and the
unpredictable conditions®® and effects of au-
tonomous system deployments.t® As a result, it
will be comparatively more challenging for mili-
taries facing a complex conflict environment to
determine whether and how data issues are likely
to affect a deployed autonomous system and, by
extension, where on the scale of reliability and risk
that system will perform.®”

61 See also Crootof (2016, 1373). For a similar formulation of this notion, see Morgan et al. (2020, 34). On the inevitability of accidents, see

Scharre (2016, 5, 25); UNIDIR (2016).

62 Maas (2018, 2, 8) describes such accidents as “unforeseeable’ yet inevitable”. See also Scharre (2016, 25); Yampolskiy (2020).

63 The traditional test, evaluation, validation and verification processes that grade the vulnerabilities, failure points and reliability metrics of
complex non-autonomous systems are widely regarded as being inadequate for gauging the reliability, vulnerabilities and fit of complex
autonomous systems. Interview with Tim McFarland, 13 November 2020; Haugh et al. (2018, 2-1 to 2-3); Luckcuck et al. (2019). Testing
and risk assessment could be particularly challenging for those autonomous systems with a low level of understandability, those with a
large number of tightly coupled interacting algorithmic components, or those with a low level of technical predictability. Flournoy et al.
(2020, 7-10); NSCAI (2021, 137). Nor are these processes equipped to account for “data drift.” Haugh et al. (2018, 2-3).

64 Lohn (20204, 5). The development costs of raising the reliability of existing advanced Al models to match those of complex non-autonomous
systems could be too high for many States; according to the Benaich & Hogarth (2020) the cost (in terms of computing time and power)
of reducing a state-of-the-art image recognition system'’s failure rate by even few percentage points could run to many billions of dollars.

65 Non-autonomous systems are not subject to the “operational unpredictability” that makes it difficult to know in advance what inputs an
autonomous system will encounter. A nuclear reactor is a complex, brittle system, but it is unlikely to encounter inputs for which it was
not specifically designed; by contrast, an autonomous drone operating in an unfamiliar battlefield is quite likely to encounter inputs that

cannot have been anticipated. Holland Michel (2020b, 5).

66 For example, the possible outcomes of a failure in an autonomous system - especially a system with highly autonomous capabilities and a
wide “decision space” - could also be far more difficult to model than the outcomes of a malfunction in an equivalent non-autonomous
system such as, say, a missile on a ballistic trajectory. Interview with Maria Vanina Martinez, 2 November 2020; Boulanin (2019, 20, 133);
Boulanin & Verbruggen (2017, 70); Carvin (2017, 9); Defense Innovation Board (2019, 16, 66); Holland Michel (2020b, 5-7, 19); IEEE

(2017,128); Scharre (2016, 5); UNIDIR (2016).

67 Flournoy et al. (2020, 8); Jenihhin et al. (2019); Lohn (202043, 5); Pinelis (2020).
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4. LEGAL RND OPERATIONAL IMPLICATIONS

The vulnerability of all autonomous systems to
data issues, and the relative unknowability of the
failures those issues can lead to, has broad im-
plications. The “comprehensive, context-based
human judgment”®® necessary for the legal use
of autonomous weapons depends on the ability
to anticipate and respond to data issues that
could cause unintended harm. In this case, known
unknown data issues raise the possibility of a
legal paradox: Because such issues are unfore-
seeable with current testing and risk assessment
measures, those employing these technologies
may not be required to anticipate or respond to
those issues. But because these issues are also
by their very nature inevitable, these actors would
need to address them, and could be held respon-
sible for any harm stemming from a failure to do
so. This chapter will explore these considerations
in detail.

4.1 INTERNATIONAL LAW
AND MILITARY
AUTONOMOUS SYSTEMS

The body of international law governing hostilities
does not make any specific provisions relating to
digital data.®® But the fact that data issues can
lead autonomous systems to cause unintended
harm’® implicates a range of international legal
principles.”

In practice, this means that if a data issue causes
an autonomous weapon to inflict unintended
harm, those that employed the weapon could bear
responsibility for the harm if, among other factors,
they:

> Could have reasonably anticipated the issue or
did not account for the issue in their judgments
related to proportionality and distinction;

FIGURE 6.

KNowinG ABOUT
ODATA ISSUES

ANTICIPATING
DATA ISSUES

RESPONDING TO
DATA ISSUES

In the application of international law to the use of

autonomous weapons, users of such technologies would have

to anticipate and (if possible) respond to data issues that might
cause harm. Ultimately, doing so hinges on having prior knowl-
edge of those issues.

68 GGE on LAWS (2020, 5).

69 Interview with Rebecca Crootof, 18 November 2020; interview with Tim McFarland, 13 November 2020.
70 Including the misidentification of protected persons or objects, inadvertent escalation, friendly fire incidents, and other accidents. Scharre

(2016, 5).

71 Namely distinction, proportionality, and precaution. Interview with J.F.R. Boddens Hosang, 16 November 2020; interview with Elisabeth
Hoffberger-Pippan, 11 November 2020; interview with Molly Kovite, 11 November 2020; interview with Tim McFarland, 13 November
2020; interview with anonymous expert, 12 November 2020; Boulanin et al. (2020, 6).
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> Did not maintain reasonable certainty until the
end of the operation that the issue would not
cause unintended harm; and

> Did not take all feasible measures to prevent
that harm either during the lead-up to the
attack or during the course of the operation.”
(The exact threshold of “feasible” and the
degree to which militaries must take these
factors and risks into account will vary from
case to case.”®)

This is also the case of unintended harm resulting
from adversarial data issues.”* However, if the ad-
versarial action grants the adversary some level
of control of the weapon, the legal responsibility
to anticipate and prevent unintended harm would
pass, either entirely or in part, to that adversarial
actor.”®

In other words, militaries would have to anticipate,
take into account, and where necessary respond
to all data issues in an operation—but only if they
have reason to believe’® that such issues could
adversely affect their weapon systems and po-
tentially cause unintended harm.”” Therefore, the
responsibility to address data issues in opera-
tions ultimately depends on whether the relevant

parties know (or should have known) about those
issues.

4.2 ANTICIPATING DATA ISSUES

If a particular type of data issue is known to
cause failures in an autonomous system, those
employing the system may have a responsibility
to anticipate the likelihood of such issues in the
environment’® and factor those likelihoods into
their decisions on whether and how to employ the
weapon.”® This responsibility to anticipate issues
would likely be all the more crucial in cases where
the user does not have the capacity to respond to
issuesinreal time®® (see Section 4.3). Many factors
will impact the degree to which data issues can be
anticipated.

> Some issues may be easier to anticipate.’!
Weather conditions, for example, can be
measured and accurately forecast; intelligence
collection can indicate the presence of enemy
capabilities such as jamming weapons.8? Other
issues, such as the confluence of multiple
distinct environmental factors, or previously
unknown adversarial countermeasures,®3 will
be more difficult to anticipate.

72 This was a shared view among all legal and policy subject matter experts interviewed for this study.

73 A broad range of factors contribute to the determination of whether a measure is feasible in any particular instance. Interview with
anonymous expert, 12 November 2020; Quéguiner (2006, 809-11).

74 That is, if the possibility and effects of an adversarial attack on the autonomous weapon system could have been reasonably foreseen
with the information available to the decision makers, and if the decision makers did not at the very least take that possibility into
account when deciding to employ the system, some responsibility may apply. Interview with J.F.R. Boddens Hosang, 16 November 2020;
interview with Elisabeth Hoffberger-Pippan, 11 November 2020; interview with anonymous expert, 12 November 2020.

75 Interview with J.F.R. Boddens Hosang, 16 November 2020; interview with Molly Kovite, 11 November 2020.

76 Several States refer to this as the standard of “reasonably available” information; if information about, say, a system’s potential for errors
could not be reasonably discovered before the operation, it cannot necessarily be claimed that this information should have been known
at the time of planning and executing the attack.

77 Interview with J.F.R. Boddens Hosang, 16 November 2020; interview with Elisabeth Hoffberger-Pippan, 11 November 2020; interview with
anonymous expert, 12 November 2020.

78 Interview with J.F.R. Boddens Hosang, 16 November 2020; interview with Elisabeth Hoffberger-Pippen, 11 November 2020; interview with
Molly Kovite, 11 November 2020; interview with Tim McFarland, 13 November 2020; interview with anonymous expert, 12 November
2020.

79 If there is a non-trivial probability of an issue arising in an operation, decision makers must weigh this factor against other factors that
may be relevant to the decision, such as the density of civilian objects or persons in the area that may be at risk if the system fails, the
military necessity of the objective, and the availability of other, potentially less risky means or methods of achieving the same goal. Per
Quéguiner (2006, 796-800), belligerents are required to select the viable option that is least likely to cause injury to civilians.

80 Though such systems would be less vulnerable to adversarial data issues arising from communications jamming. Interview with Rebecca
Crootof, 18 November 2020.

81 These may also be referred to as “planning assumptions”. Boulanin et al. (2020, 9).
82 Interview with anonymous expert, 5 November 2020.

83 The fact that no autonomous system is “unattackable” also means that the possibility of adversarial countermeasures can never be entirely
dismissed (except, perhaps, in instances where no active adversaries are operating), which may further undermine reasonable trust
that a system will operate as intended in any given instance. Comiter (2019, 30). All weapons are subjected to countermeasures in war,
but the effects of countermeasures on conventional weapons may be more predictable than the effects of countermeasures on AWS.
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> Anticipating issues will be more challenging
in missions with a long duration, operations
over a wide area, operations in particularly
complex or dynamic environments, and opera-
tions involving a highly active or sophisticated
adversary.

> In cases of high “operational unpredictabili-
ty”, 84 it may be hard to anticipate not only what
conditions a system might encounter but also
when it might encounter them.8>

> The amount of time and information that is
available to make assessments prior to an
attack will depend, in part, on whether the
force is engaging in “deliberate” or “dynamic”
targeting.8®

84 Holland Michel (2020b, 5).
85 Interview with anonymous expert, 6 November 2020.

If those using an autonomous weapon are unable
to anticipate issues or conditions that could cause
failures and harm, this inability would likely factor
into the decision on whether a system could be
launched.®” It could be legally tenuous to employ
an autonomous weapon where the chain of
command has a limited sense of whether it will
encounter known issues. (In many cases, this
would also be operationally undesirable.®®) These
knowledge gaps may also confound decisions on
how to apply measures to mitigate the harmful
effects of those issues,?® such as constraints to
the system or tuning its parameters or functions.®®

86 Deliberate targeting generally requires a longer, more cautious and studied evaluation, whereas dynamic targeting may be carried out with
less consideration of a wider set of facts. For a full breakdown of the steps that go into both deliberate and dynamic targeting, see

Ekelhof & Persi Paoli (2020b). See also Devitt et al. (2020, 7).

87 Interview with anonymous expert, 15 October 2020; Boulanin et al. (2020, 7, 9); Quéguiner (2006, 796).
88 Interview with Molly Kovite, 11 November 2020; interview with Henrik Reboe Dam, 5 January 2020.

89 Bagchi et al. (2020).
90 Interview with Maria Vanina Martinez, 2 November 2020.
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4.3 RESPONDING TO DATA ISSUES

In cases where data issues have a likelihood
of manifesting, those employing autonomous
weapons may have a responsibility to maintain
some capacity to detect and respond to such
issues to prevent harm.®® The degree of this re-
sponsibility hinges, in part, on whether it is feasible
to respond to such issues in sufficient time.®?
A range of factors will determine the degree to
which operators can do so.%3

> If an autonomous system channels a rich
live feed (for example, video) to its human
operators, they may have a higher capacity for

detecting issues. In other instances, such as
communications-denied environments, they
may only have access to limited snippets of
the weapon’s incoming data.>*

If the live data collected by an autonomous
system are complex and multifaceted, the
operator’s capacity to identify issues may be
lower.%>

Certain issues may be imperceptible
to the human operator. Spoofing might, for
example, fool not only the autonomous system
but also those who are overseeing it.%®

If a system has very low understandability,®” it
could be hard to find the cause of a problem

91 Interview with Anja Dahlmann, 11 November 2020; interview with Elisabeth Hoffberger-Pippen, 11 November 2020. This mirrors the
practice of States that employ precision-guided weapons that can be controlled until moments before the impact. If operators of such
weapons detect anissue, such as a civilian entering the blast zone of the weapon, they maintain the ability - and thus when feasible, the
responsibility - to abort the weapon. Quéguiner (2006, 804). This is known as “shifting cold” or a “post-launch abort”. Interview with

Molly Kovite, 11 November 2020; Schmitt & King (2018).

92 Operators cannot be expected to abort a system if there is no reason to believe that a data issue is present. As one defence official
commented in Reim (2020), “You can’t just look at the outcome [from an Al system] and say, ‘Well, the outcome wasn’t what | expected,

and therefore there must be something wrong with the system™.

93 Interview with Anja Dahlmann, 11 November 2020; Interview with anonymous expert, 21 October 2020; interview with anonymous expert,

6 November 2020.

94 One anonymous expert, interviewed 6 November 2020, posited that given the difficulty of detecting issues in such arrangements, human
operators may need to proactively check on a system periodically rather than simply wait to respond to issues when they arise.

95 Holland Michel (2020b, 17).

96 Interview with Henrik Ragboe Dam, 5 January 2020; Bagchi et al. (2020); Lohn (2020b, 7-8, 11-12).
97 Interview with anonymous expert, 5 November 2020; Baksh (2020); Holland Michel (2020b, 15).
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or know how to correct it,°® even when it is
evident that an issue exists.®®

e Both insufficient trust and excessive trust
(“automation bias”), could hamper operators’
ability to recognize and correctly interpret
certain issues.10

* In some cases, the form of human-machine
interaction may not enable operators to
intervene on a detected issue in enough time
to prevent a failure.!°!

4.4 KNOWING ABOUT DATA ISSUES

Ultimately, the ability, and thus responsibility, to
anticipate and respond to data issues that could
cause unintended harm depends on whether
those employing the system know about such
issues. As described in Chapter 3, though States
have a range of instruments to make weapon
system vulnerabilities known prior to use, auton-

98 European Commission (2020, 2).

omous weapons can fail and cause unintended
harm as a result of data issues that the decision
makers employing those weapons could not
have (and thus need not have) reasonably known
about.!®2 This could pose a legal paradox.

Unknown - If the review and risk assessment
process for an autonomous weapon has given
those employing the system no specific reason
to believe that relevant data issues could emerge
or result in unintended harm, they would not be
required to take those specific data issues into
account, or anticipate, detect or respond to those
issues, during that mission.'°3 In the event of harm
arising from such “unknown” failures, these actors
could not reasonably be accused of being respon-
sible for failing to take the risk of such failures into
account.!°4 [t would not be possible to prove that a
human decision maker was criminally reckless or
had wilful criminal intent in using a system in spite

99 Interview with Maria Vanina Martinez, 2 November 2020; interview with Davide Scaramuzza, 2 October 2020; Holland Michel (2020b, 17).

100 The issue of “trust calibration” is well studied in the literature on human-machine interaction. See, for example, CRS (2019, 31); Devitt
(2018); Dietvorst et al. (2016); Hoffman (2017); Lewis et al. (2018); Morgan et al. (2020, 36); Parasuraman & Manzey (2010); Wang et al.

(2016).
101 Boulanin et al. (2020, 19); Carvin (2017, 10).

102 In this context, an “accident” may therefore be characterized “as an undesired and unplanned (but not necessarily unexpected) event”.
Leveson (1995, 175), quoted in Scott & Yampolskiy (2019) [emphasis added].

103 This standard is sometimes framed as “reasonable foreseeability”. Nohle & Robinson (2017).

104 Interview with Rebecca Crootof, 18 November 2020; interview with Molly Kovite, 11 November 2020. Describing unavoidable accidents in
the context of non-autonomous weapons, Devitt (2021) refers to such failures as a “manifestation of an unforeseen uncertainty”, which

cannot be blamed on “human incompetence”.
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of that system’s vulnerabilities, if those vulnerabil- Y. § EFFECTS OF THE KNown
ities were truly unforeseeable.10° UNKNOWN PRRADOX

Known - However, all autonomous systems will
exhibit failures in use that the testing and review
of those systems didn’t identify. This fact could
itself constitute a reasonable basis to doubt that
unintended harm can be avoided.’®® If an autono-
mous system has known unknown failure modes,
those deciding whether and how to acquire and
use the system may not necessarily be able to
claim to have “sufficient knowledge and under-
standing” of the system.®” Nor could they neces-
sarily claim to have been able to predict the exact
effects of their decisions. The decision to acquire
and employ an autonomous weapon in spite of
this unquantified but nevertheless extant doubt©®
could leave parties open to responsibility for any
resulting unintended harm.1°

This unusual facet of complex autonomous
systems, which mirrors and potentially further
confounds questions of how to assign human
responsibility to unpredictable machine “deci-
sions”,'?2 could lead to widely differing interpre-
tations of how the law applies to these technolo-
gies.t3

Those actors attempting to make a good faith as-
sessment of the likelihood of unintended harm in
the use of an autonomous system®# will find little
guidance on how to navigate the matter of known
unknowns. For States that require their militaries
to achieve a very high degree of certainty in op-
erations, the difficulty of attaining certainty as
to the possibility of data issues or their potential
effects''> would create de facto limits on where
and how autonomous systems will be used'® and
on what type of weapons would be permitted to
have autonomous capabilities.'”

This discussion assumes that the exact source
of errors can be identified after the fact°
whereas in reality the uninterpretability of

complex autonomous systems could make it On the other hand, those with a looser threshold

of required certainty in operations will have few
compunctions about employing a potential-
ly fallible system if that system’s vulnerabilities
are not specifically known. The unknowability of
system errors may even provide convenient legal

difficult to identify the exact source of errors
- and if a weapon was fully autonomous and
was destroyed in the attack, there may be no
remaining evidence to indicate how or why it
failed.’

105 Crootof (2016, 1375); Heyns (2014, 46).

106 Quéguiner (2006, 798) describes these types of situations as “case[s] of doubt” for which the belligerent would be required to obtain
additional information prior to launching the attack. In 2019, the GGE on LAWS concluded that a lethal autonomous weapon “must not
be used if it is...incapable of being used in accordance with the requirements and principles of [international humanitarian law].” GGE on
LAWS (2019, 4).

107 The standard of “sufficient knowledge and understanding” is a widely shared view among parties to the GGE on LAWS. GGE on LAWS
(2020, 8).

108 For example, GGE on LAWS (2020, 6) notes that a possible consensus recommendation from the GGE on LAWS is that “the use of
weapon systems...that cannot reliably or predictably perform their functions in accordance with the intention of a human operator and
commander to comply with [international humanitarian law] requirements and principles...is inherently unlawful” [emphasis added]. As
Sassoli (2014, 324) notes, human decision makers do not need to understand all the technical details of their complex autonomous
systems, but they must know the result of using that system.

109 Davison (2017,17) describes how commanders could be held liable for deciding to employ an autonomous weapon if they cannot reasonably
predict the effects of that employment, and if that employment then causes unintended harm.

110 The notion of “traceability” is key to many visions of responsible Al. Jobin et al. (2019).
111 Holland Michel (2020b, 15).
112 HRW & IHRC (2015); ICRC (2018, 14-16); Verdiesen et al. (2021).

113 Taken to its logical extreme, this paradox either implies that a) the use of any autonomous weapons that are known to have unknown
data issues may always run afoul of international humanitarian law requirements or b) that there is no basis for responsibility for any
unintended harm arising from any unanticipated issue - neither of which is practical. Interview with anonymous expert, 12 November
2020.

114 The idea of “good faith” is a key tenet of applying feasible measures (given the absence of hard lines relating to feasibility). See Lubell et al.
(2019, 18); Quéguiner (2006, 810).

115 All of which contributes to the inherent unpredictability of autonomous systems. Holland Michel (2020b, 7).
116 Interview with Tim McFarland, 13 November 2020.

117 States might, for example, limit a system’s weapons load so that the kinetic effect of any failure would be small.
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cover against responsibility for harm that may
not, in fact, have been totally accidental.’® Even in
cases where a system’s specific failure points are
known, detecting such issues in the environment
might require detailed and extensive intelligence
collection,''® so much so that it could be claimed
that such information is not reasonably availa-
ble.’?° Similarly, though States can be held respon-
sible for unintended harm arising from the use of
weapons that have not been adequately tested,’*!
it is hard to prove testing is “inadequate” if it fails
to capture issues that could not have been specif-
ically anticipated.

This could have troubling broader consequences.
The adoption of unverified autonomous systems
by risk-tolerant actors might, in turn, prompt
more risk averse actors to employ their own un-
verified systems, since the operational need to
defend against those systems could be deemed
to outweigh the possibility of harms arising from
known unknowns. This might lead to what some
scholars have described as a dangerous “race to
the bottom” on safety and security.’??

118 This could contribute to what some groups have referred to as an “accountability gap” - a theory that decision makers and States may
eschew responsibility for any “decisions” made by their autonomous systems. Chengeta (2020); Crootof (2016, 1366); HRW & IHRC
(2015); ICRC (2014).

119 Interview with J.F.R. Boddens Hosang, 16 November 2020; Interview with anonymous expert, 5 November 2020; Interview with anonymous
expert, 6 November 2020.

120 International humanitarian law does not require belligerents to possess highly sophisticated capabilities to collect such intelligence.
Quéguiner (2006, 797).

121 Davison (2017, 16).
122 Scharre (2019, 15).

18 KNOWN UNKNOWNS: Data Issues and Military Autonomous Systems



5. POTENTIAL SOLUTIONS

The factors described in the previous chapters
indicate that, at current or near-future technology
levels, extensive work is needed for militaries to
achieve what one government report described as
“justified confidence” when deploying an autono-
mous weapon.'?®> The same will be true for those
responding to autonomous weapons failures to
assign proper responsibility for the harms they
cause.

A range of technical approaches are often cited as
potential solutions to prevent - or at the very least
make known - the failures that data issues cause
(see Annex l). However, while these approaches
show promise, they are all still emerging research
areas. And though they may reduce incidences of
failure they may also increase the complexity of
autonomous systems, thus creating new unknown
vulnerabilities.’?* It is therefore safe to say that at
least in the near- and mid-term future, technolog-
ical solutions alone will not resolve the paradox of
known unknown data issues.

This suggests that policy options may also be
necessary to navigate the challenges discussed
in this report. This chapter describes and
discusses some of the most commonly ref-
erenced options. It finds that many of these,
while potentially helpful, require significant ad-
ditional research. Furthermore, none of these
options is likely to fully address the problem
of data issues if implemented in isolation.

123 NSCAI (2021, 134).

5.1 FULL OR PARTIAL
MORATORIUMS OR
LIMITS ON USE

The ambiguity that could arise from potential data
issues is part of the reason some States believe
that lethal autonomous weapons must be prohib-
ited or restricted.’?®> However, such moratoriums
face a challenge as there is still no widely agreed
bright-line definition that would distinguish
forbidden complex autonomous weapons from
permissible automated systems.'?® Campaigns
for a ban also face significant opposition from a
variety of actors in the international debate.

Certain specific autonomous weapons capabili-
ties, such as swarming systems that could display
a high degree of unpredictability,’?” the application
of autonomy to nuclear command and control,
and systems with an “active learning” capability,
are more widely agreed to be undesirable. But a
consensus view on what would and would not
fall under a potential moratorium or ban has yet
to manifest itself either in the GGE on LAWS or
within informal forums.

Others have proposed operational constraints to
limit the possible effects of autonomous weapons
accidents.'?® These include restrictions on an-
ti-personnel systems!?® and constraints on where
and when systems can operate to ensure that
unanticipated failures would not cause harm.!3°
Such constraints can be defined at the interna-
tional level, or at the national level by way of rules
of engagement or command decisions in battle.!3!
However, constraints that are applied by technical

124 Cummings (2020c, 6); Dahlmann & Dickow (2019, 12-13); Maas (2018, 3).
125 Interview with J.F.R. Boddens Hosang, 16 November 2020. Comiter (2019) suggests that in certain applications, vulnerability to attack may

be a reason to never cede control entirely to the machine.

126 For example, the various existing automated weapons systems, such as close-in air defence weapons, that have already proven to operate
with measurable reliability and relatively low rates of unintended harm. Interview with Henrik Reboe Dam, 5 January 2020.

127 |IEEE (2017,129).

128 GGE on LAWS (2020, 6, 9) describes this as a widely shared view among parties to the GGE on LAWS. See also, for example, Finland and

the ICRC'’s submissions in GGE on LAWS (2020, 36, 88).
129 Arkin et al. (2019).

130 For example, barring autonomous systems from populated areas to ensure that if they do stray off course or malfunction catastrophically,

the risk of collateral damage would be minimal.

131 At the national level, these constraints can be defined at various stages in the process leading up to the use of force. Ekelhof & Persi Paoli

(2020b).
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means could, themselves, be undermined by data
issues.!3?

5.2 DIRECT HUMAN CONTROL

A plurality of technical, military and legal subject
matter experts interviewed for this study
described data issues as a foremost reason that
humans should remain in the loop (at the tactical
level) in critical operations involving autono-
mous systems. If States develop strict criteria for
control of each kind of autonomous weapon under
any given circumstance, operators could be posi-
tioned to get ahead of issues before harm arises,
potentially even in cases where operators cannot
identify the exact cause of the error. For example,
operators might be trained to intervene if an au-
tonomous system’s “confidence score” for a par-
ticular task falls below a certain threshold.!33

That being said, as discussed in Section 4.3, there
are a wide range of factors that would undermine
the extent to which human control could prevent
critical failures. Furthermore, human control may
fail to guarantee appropriate human responsibil-
ity for unintended harm involving autonomous
systemsin cases where dataissues canbe claimed
as unanticipated.t34

On the other hand, assigning total individual re-
sponsibility to human operators for allharms would
likely lead, in certain instances, to misattribution
of culpability.!®®> In reality, the responsibility for
harms that operators or their immediate superiors
could not have prevented may lie further up the

chain of command.’®*¢ Distinguishing the catego-
ries of error that operators should be expected to
prevent from those that they cannot (and that are
therefore the responsibility of other actors, such
as commanders, senior leadership or the manu-
facturer) remains an open research question.’?”

5.3 LIRBILITY AND ODUE DILIGENCE
REGIMES

Regardless of who is deemed responsible for an
autonomous weapon’s harms, the internation-
al community has agreed that this responsibility
must always be retained by humans.!3® Existing
frameworks for assigning this kind of responsibili-
ty hinge on the notions of fault, recklessness, neg-
ligence (a failure to take due diligence) or, in the
case of commander’s responsibility, on whether
the person had “reason to know” that their sub-
ordinate would behave in a certain way. But it is
difficult to prove any of the above in cases in which
the harm in question can be claimed to have been
unforeseeable.!®?

Some commentators have therefore proposed
a “strict liability” framework that would render
States fully liable for any unintended harm
resulting from operations involving autonomous
weapons, regardless of the finding of fault.}*° Such
an arrangement would compel States to take both
known data issues and the possibility of known
unknown data issues into account in the develop-
ment, review, and use of autonomous weapons.
Strictliability regimesarealready appliedto certain
dangerous and unpredictable activities,'** as well

132 For example, a system programmed to abide geographical constraints would rely on navigational GNSS (Global Navigation Satellite System)
data (see Annex Il) to estimate its location; any interference in that navigational data feed would undermine the system’s ability to adhere
to its constraints. An anti-material-only constraint will only be effective if the system in question has the ability to detect and avoid

personnel in its data feeds.
133 Interview with Anja Dahlmann, 11 November 2020.

134 Interview with J.F.R. Boddens Hosang, 16 November 2020; interview with anonymous expert, 21 November 2020.
135 Interview with Rebecca Crootof, 18 November 2020; Elish (2019, 55).

136 For example, responsibility may lie with the commander who opted to deploy an autonomous system without a solid grasp of the likelihood
of failure. Davison (2017, 17). Human decisions factor into all stages of the process leading up to the use of force; see Ekelhof & Persi

Paoli (2020b).

137 GGE on LAWS (2019, annex IV) has stressed the principle that human-machine interaction (HMI) must ensure compliance with international
law, but the technical particularities of designing effective HMI, as well as the attendant policies to accompany HMI arrangements, have

yet to be resolved.
138 GGE on LAWS (2019, annex IV).

139 For an overview of the potential challenge of applying existing criminal liability regimes to autonomous weapons systems, see Crootof

(2016, 1375-81); Mann (2019).

140 This proposal was argued first and most extensively by Crootof (2016). European Commission (2020, 12-16) discusses the various factors
implicated in liability matters related to Al-enabled systems and proposes strict liability as a potential legal measure. See also Geif3

(2017).

141 Such as owning wild animals or demolishing buildings. Interview with Rebecca Crootof, 18 November 2020; Crootof (2016, 1395).
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as international treaties relating to accidents in
outer space,'*? and are a common proposed legal
option for self-driving vehicles.!43

Absent a strict liability regime, establishing clearer
lines of responsibility for autonomous weapons
failures would likely, at a minimum, rely on a
tailored set of due diligence criteria. These criteria
would probably have to extend upstream from the
system’s end user to include the manufacturer
of the system,** and possibly also downstream
to include extensive intelligence collection of the
battlespace. Given the complexity and changea-
bility of data issues, such regimes of supervision
would need to be continuous, comprehensive,
dynamic, and meticulously tracked, and be applied
at every stage of the life cycle, starting long before
deployment and continuing through assessment
and evaluation after all instances of use.!*> More
work is needed to develop and standardize such
regimes.

Finally, achieving greater clarity with regard to
responsibility and liability will probably require
a closer, science-based examination of the root
causes and effects of data issues, and perhaps a
corresponding classification schema for Al acci-
dents.*® This kind of schema could help parties
distinguish known unknown accidents from
unknown unknown accidents, and apportion re-
sponsibility accordingly.

One way or another, given that autonomous
systems accidentsarise fromtheinteraction of the

142 Geif3 (2017).

143 Evas (2018).

144 Cummings (2019).

145 Margulies (2019, 19-22).

146 See, for example, Scott & Yampolskiy (2019).
147 Verdiesen et al. (2021).

technology with its environment, its users and the
regulations and norms under which it is operated,
such liability or due diligence frameworks would
likely have to account for legal and societal dimen-
sions in addition to technical aspects.!*’

5.4 LEGAL REVIEWS

An often-cited measure to help decision makers
address the ambiguity arising from data issues
is the legal review process.'*® This process could
help ensure that as few as possible of the issues
that emerge during an operation are unknown. To
achieve this effect, a review would have to:14°

> Identify any data issues (including adversar-
ial data threats’®® or the risk of “emergent
effects”!) that would undermine the applica-
tion of relevant laws in any attack.!>?

> Determine whether the system’s training
and testing environments closely match the
proposed operational environments.!>3

> Measure and validate the reliability of the
system.1#

> Evaluate the degree to which the human
element in the planned uses of the system
could reliably anticipate or respond to issues
that arise.’>®

Based on these findings, reviewers could create
guidelines to ensure that the system never en-
counters these issues or is never used in environ-
ments or in ways that would present it with inputs
that are significantly different from those inputs

148 A plurality of legal experts consulted for this study cited legal reviews as being elemental for forestalling failures arising from data issues.
Parties to the GGE on LAWS also widely share this view; see GGE on LAWS (2020, 5).

149 For a detailed overview of the likely elements of legal reviews for an autonomous weapon, see Lewis (2019).

150 Farrant & Ford (2017, 411-12).

151 Defense Innovation Board (2019, 13); llachinski (2017). See also European Commission (2020, 9).

152 For example, issues that would result in the weapon causing indiscriminate harm. Interview with J.F.R. Boddens Hosang, 16 November
2020; interview with Rebecca Crootof, 18 November 2020; Boulanin (2015, 14-15); Margulies (2019, 5).

153 Interview with Molly Kovite, 11 November 2020; interview with Tim McFarland, 13 November 2020.

154 Farrant & Ford (2017, 410) and ICRC (2006, 946).

155 Interview with J.F.R. Boddens Hosang, 16 November 2020; Haugh et al. (2018, 3-2).
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it was developed for.!56 At a minimum, reviewers §.5 RECURSIVE TESTING AND
could establish guidelines to ensure that if the REVIEW

weapon is used in such environments or ways, the
possibility of failure is taken into account in the

decision to launch or control it.157 Because unanticipated autonomous system

failures are inevitable, numerous parties to
the debate have called for a recursive testing
and review process under which any previous-
ly unknown data issues trigger a new review or
testing process.'®© This would enable States to
implement technical fixes, refine parameters and
guidelines of use, or at least ensure that decision
makers take the potential for such failures into
account in any future operations.'®!

Considerable further work is necessary to make
such reviews possible. Above all, existing testing
and evaluation techniques for complex systems
will need to be significantly overhauled to identify
vulnerabilities, rate their likelihood, quantify a
system’s reliability, and ensure that the mode
of human-machine interaction would enable
operators to respond to issues appropriately.!®
Given the technical complexity of the material,
these reviews are also likely to require closer
input from engineers than is ordinarily needed
for non-autonomous weapons.’®® In the absence
of such measures, legal reviews may only be able
to certify systems for use in extremely narrow,
closely supervised circumstances, or circum-
stances where the likelihood of unintended harm
arising from any kind of failure would be exceed-
ingly low.

But it may sometimes be impractical to retrain or
recode and re-verify a system every time an issue
is discovered, especially if such issues emerge
with high frequency.’®? Furthermore, any technical
modification could, in turn, introduce new vulner-
abilities that could themselves cause failures.163
The same could also be true for changes to how
the system is used. As a result, these modifica-
tions may also have to be subject to testing, review
or risk assessment.

156 For instance, if a review ascertains that a particular type of jamming may cause a weapons system to misidentify targets, evaluators may
draft internal rules requiring decision makers to abstain from the employment of that weapon in any instance where such jamming may
be present. Or if a system is exclusively trained and tested against uncluttered environments with high visibility, reviewers might prohibit
the use of that system in cluttered environments with degraded visibility. European Commission (2020, 8) suggests similar measures
for evaluation of civilian Al.

157 Interview with J.F.R. Boddens Hosang, 16 November 2020; interview with Molly Kovite, 11 November 2020.

158 Christie (2020); Defense Innovation Marketplace (n.d.); Flournoy et al. (2020); Boulanin & Verbruggen (2017, 70); Defense Innovation Board
(2019, 16, 66); Herpig (2019, 35); Koopman & Wagner (2016). One relevant research thread seeks to better define the factors that
determine how well-matched a proposed operational environment is to the system’s design environment, as well as the factors that
may affect the variability of environments and the degree to which they may manifest relevant data issues. Koopman & Fratrik (2019)
propose one such framework for autonomous vehicles. Ad Hoc ALFUS Working Group (2007, 30-35) proposes a range of potentially
relevant elements of a framework to categorize environmental complexity for unmanned vehicles. See also Jenihhin et al. (2019, 4).

159 Interview with J.F.R. Boddens Hosang, 16 November 2020; IEEE (2017, 118).

160 European Commission (2020, 7-8) proposes recursive reviews as a potential measure to address Al-enabled systems that experience
changes unforeseen by their manufacturer. Schmidt (2021).

161 Interview with J.F.R. Boddens Hosang, 16 November 2020; interview with Rebecca Crootof, 18 November 2020; interview with Molly Kovite,
11 November 2020.

162 Cummings (20204, 3) describes this approach as a “finger in the dyke” solution. Maria Vanina Martinez, interviewed 2 November 2020,
cautioned that merely identifying the underlying cause of errors may be a challenge, especially if a system is uninterpretable.

163 Interview with Maria Vanina Martinez, 2 November 2020; interview with Davide Scaramuzza, 2 October 2020. Sculley et al. (2014, 2) refer
to this as the “CACE Principle: changing anything changes everything.”
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5.6 STANDARDS AND
KNOWLEDGE-SHARING

A plurality of experts interviewed for this study
advocated for knowledge-sharing and common
technical standards to help States navigate the
challenges of implementing the above solutions.

International standards are a commonly proposed
tool for enabling the responsible use of autono-
mous weapons.®* Such standards could extend
beyond the literal technical elements of auton-
omous systems, to include the arrangements of
human interaction and control that will play a vital
role in enabling States to anticipate and respond
to data issues.'®®> However, standards develop-
ment for autonomous systems remains relatively
nascent. Many of the most advanced initiatives
are intended for civilian autonomous systems,
which do not pose all the same challenges as
military weapons.

To aid in the validation process for machine-learn-
ing-based systems, in particular, some have
also proposed sharing standardized data sets
that would guarantee a common baseline of ro-
bustness for all systems operating in a specific
role or environment. Some experts have noted
that States or system vendors may be reticent

to share data sets, given the sensitivity of their
content (much military data is secret) and the
advantage that more robust Al might provide to
adversaries.!®®

A similar option might include the independent
certification of data sets to ensure they sufficient-
ly capture a system’s proposed operating environ-
ment. Such validation processes could consider
not only the size and source of data sets but also
the degree to which they are representative of the
target environment (to avoid bias) and integrity (so
astoensure thatthe data have not been poisoned).
Open criteria for data sets have not yet been es-
tablished for military-type data, and some types
of data set may be harder to certify than others.'¢”

The sharing of non-technical know-how and
resources could also be valuable. For example, a
number of militaries are already building auton-
omous systems doctrine to reduce the uncer-
tainties posed by data issues, leveraging their
extensive experience in risk management for
other complex systems such as aviation. Enabling
access to these resources and expertise could
help broaden the adoption of rigorous risk-reduc-
tion policies and strategies among a broader and
more diverse cross-section of states.

164 For a discussion of technical standards for autonomous systems and their potential applicability to autonomous weapons, see ICRC (2019,

21-24).
165 Daiki (2020).

166 Interview with Elisabeth Hoffberger-Pippan, 11 November 2020; interview with Tim McFarland, 13 November 2020; Mulchandani (2020);

Pinelis (2020).
167 Interview with Rebecca Crootof, 18 November 2020.
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CONCLUSION: FIVE AVENUES FOR RCTION

The issues described in this report are formidable and, in some cases, inherent. But the risks of inaction
are potentially grave. The following five avenues for action could bolster efforts to minimize the risks of
unintended or unaccountable harms arising from the use of military autonomous systems. Like all inter-
national initiatives relating to autonomous military systems, they will require close cooperation between
stakeholders from all domains, including governments, militaries, civil society, academia and the tech-
nology sector.

1. Perform advanced, collaborative researchon : and procedures) that could serve as a founda-

the legal review process. Legal reviews are
likely to be key to addressing data issues. De-
veloping legal review procedures that resolve
the many ambiguities described in this report
will require significant new research, collabo-

rative dialogue and knowledge-sharing.

. Develop classification criteria for dataissues '
and resulting failures; specifically, develop
criteria to distinguish known unknown issues
from unknown unknown issues, and frame-
works to assign appropriate responsibility in
cases of harm arising from such issues.’®® A
finer-grain scheme for differentiating between
and a clearer
framework designating the actors for whom
those failures should be knowable - could aid
efforts to quantify risk in operations and assign
due responsibility for unintended harm arising

different types of failure'®® -

from data issues.

. Share specific knowledge on technical and
normative approaches to data and risk in
relation to autonomous military systems.
Given the formidable challenge of character- !
izing data issues, to say nothing of address-
ing them through technical approaches, all
stakeholders should be encouraged to share i
knowledge across political and disciplinary
divides. This especially applies to sharing of
best practices, given that even good faith
efforts to minimize the risks of data issues in :
autonomous systems could be frustrated by
the complexity and ambiguity of data issues.!’®
A number of militaries already possess sig-
nificant shareable relevant knowledge (for
example, sophisticated risk assessment tools

tion for assessing autonomous systems risks;
the distribution of these resources would be
beneficial for all actors seeking to mitigate the
risks of autonomous systems.

. Study adversarial measures and their effects

on autonomous weapons. No autonomous
system is “unattackable”,'* and many of the
most dangerous and unpredictable data
issues for autonomous systems could arise
from adversarial actions. By foregrounding
the science of adversarial measures, the in-
ternational community will better place itself
to model their effects and, as necessary, take
adversariality into account in the development
of norms or policies for the development and
use of autonomous systems.

. Adopt a system-of-systems approach to

studying data issues. Failures in autono-
mous systems arise from the interaction of a
range of subsystems: not just sensors and al-
gorithms but also actuators, power sources,
communications devices and other systems
in the battlespace. Taking all these interacting
systems into account will help guide parties
to more grounded solutions than discussions
that solely focus on the algorithmic element of
autonomous technologies.

168 With gratitude to Rebecca Crootof for input on this recommendation.
169 Scott & Yampolskiy (2019).

170 Interview with J.F.R. Boddens Hosang, 16 November 2020; interview with Rebecca Crootof, 18 November 2020; interview with Anja
Dahlmann, 11 November 2020; interview with Molly Kovite, 11 November 2020; Boulanin (2015); GGE on LAWS (2019, 3).

171 Comiter (2019, 30).
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ANNEX I:
ADODRESS DATA ISSUES

A wide range of technical approaches are under
development to address the types of data issue
described in this report. This Annex describes
these approaches and discusses their respective
readiness level and the challenges that may be as-
sociated with their implementation.

AUTOMATED DATA ISSUE DETECTION

Many accidents arising from data issues could
potentially be avoided by endowing autonomous
systems with the capability to detect when they
are encountering an input for which they were not
designed or validated. A growing body of research
seeks to develop “out-of-distribution detection,”
“anomaly detection,” and “shiftdetection” features
that can endow Al systems with this capacity.l”?
A related strand of emerging research seeks to
develop tools for quantifying the degree to which
the given environment matches the environments
for which the system was developed, trained and
validated.'”® Such features might enable systems
to revert to a fail-safe mode when a data issue is
encountered or enable decision makers to develop
a more informed understanding of the likelihood
or risk of failures before launching a system.'”4

Confidence scores, which are employed in some
machine-learning systems to indicate the degree
to which the characteristics of the given data
point resemble the characteristics of the training
inputs that were marked with the same label,
may provide some indication that a system is
encountering an unusual input. As such, these
features could serve as a de facto form of anomaly
detection. Anautonomous system could be coded,
for example, to revert to a fail-safe mode if its con-
fidence score falls below a particular threshold.
But relying on confidence scores is not necessari-
ly, at current technology levels, a foolproof option.

TECHNICAL RAPPROACHES TO

A growing body of research has demonstrated
that systems can be liable to produce high-con-
fidence erroneous outputs when they are fed
certain anomalous or adversarial inputs.}”>

HYBRID SYSTEMS

Sometimes, data issues cause failures in autono-
mous systems because they lack the capacity to
reason through those issues and determine an
appropriate course of action. One approach that
seeks to correct this problem is hybrid intelligent
systems that integrate machine learning with
symbolic (also known as rule-based or knowl-
edge-based) algorithms. Such hybrid systems,
which are also known as neurosymbolic systems,
pair machine learning’s capacity to accurately
classify incoming data with symbolic Al's capacity
to draw logical conclusions from those outputs.
In other words, such systems combine the
“cognitive” capacity of machine-learning systems
with the “logic-based” capacity of symbolic Al.}7®

For instance, a neurosymbolic system designed
for tracking objects through physical space
would employ a learning-based vision algorithm
to identify and follow the object, and a symbolic
algorithm to validate the object’s behaviour
against a library or model of the expected physical
behaviours of such objects. By cross-checking
the output from the learning system against the
library or model, this secondary system could
deduce that when the object disappears from view
it is because it has passed behind another object,
rather than because it no longer exists. Hybrid
systems could also theoretically detect when an
object is exhibiting unexpected or unnatural be-
haviour.r””

172 Interview with anonymous expert, 15 October 2020; Amodei et al. (2016); Lohn (2020a, 5-6); Rabanser et al. (2019, 1-2, 5); Ren &

Lakshminarayanan (2019).
173 Strout (2020).

174 For example, see challenges discussed in Bulusu et al. (2020, 132, 343-44) with respect to out-of-distribution detection for deep learning.

175 For example, Nguyen et al. (2015, 7-8).
176 Interview with Maria Vanina Martinez, 2 November 2020.
177 Smith et al. (2019, 3-6).
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Such an architecture could prevent autonomous
systems from making an erroneous “best guess”
output based on an anomalous or incomplete
data input.”® However, hybrid Al, like anomaly
detection, remains an emerging research space
that has for the most part only been demonstrat-
ed in experimental settings. Additionally, to be
effective in highly complex and dynamic envi-
ronments, hybrid systems may require extremely
detailed and complex logical models that are chal-
lenging to build and require detailed domain-spe-
cific information about the proposed operating
environment.'”® These data may not always be
available in a conflict setting.

MULTISENSOR SYSTEMS

To account for the natural limitations of all data
types and the sensors that collect them, one
common approach is to employ multiple data
sources aboard a single system to cross-validate
the attributes of any given observed object or
phenomenon in the environment.!®° For example,
an autonomous system might employ both a
vision system and a radar system to confirm the
existence and identity of physical objects in the
area of operations. If the vision-based algorithm
drawing data from the camera incorrectly identi-
fies a cloud as an enemy aircraft, or if the image
recognition system is being spoofed by an adver-
sarial example, the radar could demonstrate that
no aircraft is, in fact, present.8!

Sensor fusion can also generate a more granular
identification of the observed object or phenom-
enon, thus reducing the effect of data quality
issues that could arise in a standalone sensor. For
example, it might be challenging for a target rec-
ognition system to deem whether a vehicle is part
of anadversary force based oninfrared data alone,

178 Meyer-Vitali et al. (2019, 10-18).
179 Interview with Maria Vanina Martinez, 2 November 2020.

but if a secondary hyperspectral sensor detects
that the system is emitting chemical signals asso-
ciated with explosive ordinance, it may be able to
achieve a justifiably higher confidence identifica-
tion.182

Fusion is a common technique for automated
physical systems. Self-driving vehicles rely on
sensor fusion to build a comprehensive and
reliable model of their surroundings.'®3 However,
as the ongoing challenges of achieving reliable,
fully automated self-driving vehicles demon-
strates, sensor fusion alone cannot prevent all
dataissues, nor does it necessarily mitigate issues
arising from discrepancies between the opera-
tional environment and the system’s training and
development.

Furthermore, the addition of new sensing mo-
dalities to an autonomous system increases the
challenge of comprehensive testing and valida-
tion.'8* Additionally, the limited power and payload
capacity of autonomous systems naturally con-
strains the number and variety of sensors they
can carry.

EXPLAINABLE AI

Data issues can be especially difficult for human
decision makers to anticipate or detect in uninter-
pretable “black box” autonomous systems. Unin-
terpretable Al also poses a challenge for identify-
ing issues in development and testing.!®> A broad
body of research seeks to develop Al systems that
are either inherently transparent or that are com-
plemented by tools that “explain” how the system
works. While much hope has been placed in ex-
plainable Al research, this remains an emerging
field that has not as yet achieved provable, rep-

180 Interview with Davide Scaramuzza, 18 September 2020; interview with anonymous expert, 15 October 2020; interview with anonymous

expert, 6 November 2020.

181 For example, an inertial navigation system - which does not rely on GPS - could serve to cross-validate a system’s GPS readings; the system
could be coded to revert to a fail-safe mode whenever the two readings diverge, since this may be a sign that the GPS is being spoofed.

Interview with Henrik Reboe Dam, 5 January 2020.

182 Intelligence “fusion” is a common practice in modern (non-automated) targeting operations. In many cases, operators are required to
validate one source of data against a second source. Interview with J.F.R. Boddens Hosang, 16 November 2020; interview with Molly
Kovite, 11 November 2020; interview with Henrik Reboe Dam, 5 January 2020; interview with anonymous expert, 5 November 2020.

183 Cohen (2018).
184 Cummings (2020c¢, 3, 6).

185 Boulanin & Verbruggen (2017, 70); Hagstrom (2019, 37); Haugh et al. (2018, 3-2); llachinski (2017,199-209).

g6 HKNOWN UNKNOWNS: Data Issues and Military Autonomous Systems



licable solutions for the complex challenges
described in this report.186

LARGER TRAINING AND TESTING
DATA SETS

At the moment, the only consistently and demon-
strably reliable method to ensure that machine
learning systems are validated against the widest
possible degree of variance in data'®’ isto increase
the size of the data sets on which they are trained
and tested.

However, creating data sets that comprehensive-
ly cover the variability of a complex real-world
uncontrolled environment is a resource-inten-
sive process'®® involving a lengthy list of steps.
These include cleaning, curation, optimization and
labelling processes that require significant time,
personnel and expertise.!®® As such, the creation
of sufficiently comprehensive data sets, at least
today, would likely be prohibitively difficult and
expensive for most militaries.!°

Though certain types of data for training ma-
chine-learning systems are widely and easily ac-
cessible - such as image recognition data - these
generally only encompass civilian environments
and applications, meaning that they would not
make military autonomous systems robust against
conditions specific to warfare.’®® And even large,
tailored data sets can only systematically capture
those data issues that developers and evaluators
of an autonomous system know in advance to be
potentially problematic. (“One shot” learning, a
technique for training Al systems on a very limited
data set, has shown some early promise, though it
likely would not be viable for highly variable envi-

186 Holland Michel (2020b, 22); Rudin (2019); Schmelzer (2019).
187 Taori et al. (2020, 2).
188 Flournoy et al. (2020, 9)

ronments such as conflict settings, at least for the
foreseeable future).

SYNTHETIC TRAINING AND TESTING

Because the creation of large custom data sets
is difficult and expensive, an increasingly popular
option for widening the development environ-
ment of Al is the use of synthetic data.'®? For
example, a machine-learning vision system for
identifying airplane types in satellite imagery
might struggle to identify aircraft that were only
pictured a handful of times in the testing data; by
training and testing such a system with synthetic
images of those aircraft types, it might achieve a
more robust performance.’®® Synthetic data can
also randomize various qualities of the input data,
thus increasing the diversity of inputs that the
system is trained against and reducing the likeli-
hood of edge cases.’®*

Another potential technique for expanding the
training envelope of machine-learning systems
is the use of generative adversarial networks, an
architecture that generates a large number of
input examples derived from an original set of
real training data. By generating a wide variety of
examples, generative adversarial networks can be
used either to generate highly realistic synthetic
training data (which can subsequently be used to
train a model) or to directly train the model itself.19®

However, because they are artificially generated,
such synthetic worlds do not yet fully or perfectly
replicate the complex chaotic physics of re-
al-world environments!®® and may fail to properly
capture the shifts or one-off edge cases that
emerge in real-world data.!®” The uninterpretabil-
ity of synthetic data creation engines would also

189 For a description of the “data pipeline” process for machine-learning systems, see Chahal et al. (2020, 5); Stumborg (2019).
190 Interview with Rebecca Crootof, 18 November 2020; Cummings (2020a); Svenmarck et al. (2018, S-1to 5-4).

191 Chahal et al. (2020, 10-11); Freedberg (2019).
192 Beery et al. (2020); Shakhuro et al. (2019).
193 Freedberg (2020); Shermeyer (2019).

194 See for example, Tremblay et al. (2018).

195 Interview with Maria Vanina Martinez, 2 November 2020; interview with anonymous expert, 21 October 2020; Creswell et al. (2018, 62-
64). Generative adversarial networks could also be used to generate difficult-to-detect adversarial examples for spoofing Al systems.

Tucker (2019).

196 Chahal et al. (2020, 11). Such simulations will be “limited by the scope of the model”, per Hagstrém (2019, 38).
197 Interview with Davide Scaramuzza, 18 September 2020; Taori et al. (2020).
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pose a challenge to the validation of any systems
trained on those data. As a result, synthetic data
alone cannot be expected to resolve the inherent
challenges that may face deployed systems that
have had a limited training environment.1®8

TRANSFER LERRNING AND DOMAIN
AROAPTATION

A more fundamental field of research seeks to
address the source of the problem of discrepant
data by developing machine-learning systems
that are robust in environments that differ from
the environments for which they were trained and
tested. Such techniques, which are known broadly
as “domain adaptation” and “transfer learning”1%°
could significantly improve the robustness of
learning-based systems, but they remain an
emerging area of research and have not yet been
thoroughly demonstrated for complex, dynamic,
uncontrolled environments?°° or military settings.

198 Dahlmann & Dickow (2019, 13).
199 For an introduction to domain adaptation and transfer learning, see Lohn (20203, 6).
200 Kouw & Loog (2018, 29).
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ANNEX II:

Physical autonomous systems will collect data
through a variety of sensing systems. The most
common sensing modalities that autonomous
weapons will employ include:

> Electro-optical cameras, which collect
imagery in the visible light spectrum. Stereo-
scopic cameras with multiple lenses enable
the estimation of depth in physical space.

> Infrared cameras, which detect objects and
phenomena based on variations in tempera-
ture

> Hyperspectral sensors, which generate
imagery by detecting objects or phenomena
across a wide band of the electromagnetic
spectrum

> GNSS (Global Navigation Satellite System)
receivers, such as GPS and GLONASS, which
take in information about the system’s geo-
graphic location from satellites

> Inertial measurement units, which collect in-
formation about a system’s orientation, force
and movement through space

> Radar, which detects objects by emitting radio
pulses into the environment and recording
returned pulses that bounce off those objects

> Lidar, which detects objects by emitting laser
pulses into the environment and recording
returned pulses that bounce off those objects

> Acoustic sensors, which collect sounds from
the environment

> Radio receivers, which collect communica-
tions data such as remote-control links or in-
tercepted “signals intelligence” (for example,
intercepted radio chatter or tracked cell phone
location data)

> Sonar, which is used to detect objects under
water by either recording their emitted sounds
or receiving returned sound pulses that
bounce off the object

SENSORS IN FOCUS

Just like the five human senses, all sensors used
by autonomous systems today have limita-
tions that give rise to incomplete, poor quality
or false data inputs. For example, electro-optical
cameras cannot operate in low-light conditions,
can sometimes fail to detect surfaces that have a
uniform texture (such as a clean painted wall)?°! or
differentiate between surfaces that have similar
colour or lighting,2°2and may be thrown off by glare
or reflections. Acoustic sensors have a limited
range, particularly in noisy environments.?°3 Lidar
tends to struggle in adverse weather.?°* Radar
systems designed for traditional air defence may
not be able to detect small, distant, slow-moving
objects.205

All such systems could also be susceptible to ad-
versarial action. While many of the most famous
examples of adversarial Al attacks focus on vi-
sion-based object recognition systems, a growing
body of research has pointed to the susceptibili-
ty of a broad range of sensor and receiver types
commonly used in autonomous systems, including
lidar and radar.2°¢

201 Interview with Davide Scaramuzza, 2 October 2020; interview with anonymous expert, 6 November 2020.

202 For example, this effect contributed to the fatal crash, in 2016, of a Tesla Model S that was unable to distinguish the side of a truck from

the sky above.
203 Holland Michel (2020a).

204 Interview with Davide Scaramuzza, 2 October 2020; Yurtsever et al. (2020, 11).

205 Alhaji Musa et al. (2019).
206 See Cao et al. (2019); Yeh et al. (2020).
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Known unknowns

Data Issues and Military Autonomous Systems

In order to perform as desired, autonomous systems must collect data
that are complete, relevant, accurate, and aligned with the data for which
the system was developed and tested. But the harsh, dynamic, complex
and adversarial nature of conflict environments poses a wide range of
obstacles to the collection of such data. As a result, autonomous systems
cannot always be expected to achieve the exact same performance in
real-world use that they demonstrated in development or testing. And
crucially, they will be liable to failures that are both inevitable and impossi-
ble to anticipate: “known unknowns.” This report describes common data
issues for autonomous systems and explains how they give rise to “known
unknown” failures. It then explores the legal and operational implications
of such failures, and considers a range of potential policy and technical
solutions by which they could be addressed.
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