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THE BLACK BOX, UNLOCKED

IN COMPUTING, a “black box” is a system for which we know 
the inputs and outputs but can’t see the process by which 
it turns the former into the latter. Somewhat confusingly, 
airplane flight recorders are also referred to as black boxes; 
when an artificially intelligent system is indecipherable, 
it is like an airplane black box for which we have no key. 
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INTRODUCTION
“Predictability” and “understandability” are 
widely held to be vital qualities of artificially 
intelligent systems.1 Put simply: such systems 
should do what they are expected to do, and 
they must do so for intelligible reasons. This 
view represents an important point of common 
ground among the many different parties to 
the debate on emerging technologies in the 
area of lethal autonomous weapon systems 
(LAWS) and other forms of military AI. Just as 
the unrestricted employment of a completely 
unpredictable lethal autonomous weapon 
system that behaves in entirely unintelligible 
ways would likely be universally regarded as 
injudicious and illegal, the use of a perfectly 
predictable and understandable autonomous 
weapon system—if such a system existed—
probably would not pose many of the central 
regulatory concerns that underlie the ongoing 
debate.

This suggests that any path that is ultimately 
taken to address the use of LAWS and other 
forms of AI in military applications must 
account for what is sometimes known as the 
“black box dilemma” of AI. Indeed, adherence 
to existing international humanitarian law 
(IHL), let alone hypothetical new laws, may 
even hinge on specific measures to ensure 
that LAWS and other military AI systems do 
what they are expected to do, and do so for 
understandable reasons.2 And yet for the most 
part in the discourse on LAWS and military 
AI, predictability and understandability have 
not yet been treated with the kind of detailed 
foregrounding that befits an issue of such 
importance and complexity. This has led to 
confusion around the technical fundamentals 
of AI predictability and understandability, 
how and why they matter, and the potential 
avenues by which the black box dilemma 
might be addressed.

This report seeks to resolve these ambiguities 
by providing a common baseline of 
knowledge on this subject. Sections 1 and 
2 explain what exactly it means to say 
that an intelligent system is “predictable” 

and “understandable” (or, conversely, 
“unpredictable” and “unintelligible”) and 
illustrate that there are various types of 
understandability and predictability that differ 
in important ways. Section 3 describes the 
specific practical reasons why predictability 
and understandability will be necessary 
characteristics of LAWS and other military AI at 
every stage of their development, deployment 
and post-use assessment. Section 4 lists the 
factors that will determine the appropriate 
required level and type of predictability and 
understandability at each of these stages. 
Section 5 discusses measures that may be 
necessary to achieve and assure these levels 
of predictability and understandability—
including training, testing, standards 
and Explainable AI (XAI) technology. The 
conclusion proposes five avenues for further 
inquiry and action for policy stakeholders, 
militaries and the technical community.

NOTE 
While “explainability” is more commonly 
used in the debate on LAWS, this report 
opts for the term “understandability”. In 
the scientific literature, “explainability” 
generally refers only to technical measures 
that “explain” black box AI systems (see 
page 21) and not to systems that are 
inherently interpretable. Furthermore, the 
word “explainability” unhelpfully implies a 
degree of human-like agency on the part 
of the AI system, in the sense that it can 
“explain” itself like a person. The broader 
and more neutral term “understandability” 
covers the technical explainability and 
interpretability of the AI system while also 
accounting for the human subject’s capacity 
for understanding—and it does not imply 
agency on the part of the machine.
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KEY TAKEAWAYS OF THIS REPORT

3

• There are three distinct senses of AI un/predictability: the degree to which a system’s 
technical performance is or is not consistent with past performance, the degree to which any 
AI or autonomous system’s3 specific actions can (and cannot) be anticipated, and the degree 
to which the effects of employing an AI system can be anticipated. (Page 5)

• Predictability is a function of a system’s technical characteristics, the kind of environments 
and adversaries to which the system is subjected, and the degree to which it is understood 
by its users. (Page 7)

• Understandability is based on a system’s intrinsic interpretability as well as the human 
subject’s capacity for understanding. There are multiple ways in which an intelligent 
system can be “understood”, not all of which are grounded in technical aspects of the 
system or the human’s technical literacy. (Page 10)

• Predictability is not an absolute substitute for understandability, or vice versa. A 
combination of both high predictability and high understandability may be the only optimal 
condition for safe, prudent and compliant use of complex intelligent or autonomous military 
systems. (Page 11)

• Predictability and understandability are necessary qualities in autonomous weapons and 
other forms of military AI for a wide range of reasons throughout their development, 
use and assessment. (Page 13)

• The appropriate level and type of predictability and understandability in these systems 
will vary widely according to a range of factors, including the type and criticality of the 
mission, the kind of environment or input data, and the type of stakeholder assessing or 
operating the system. (Page 17)

• Potential approaches to achieve and assure appropriate predictability and understandability 
in military AI systems will likely implicate efforts related to training, testing and standards. 
Technical research efforts to build XAI also offer some promise, but this remains a nascent 
field. (Page 19)
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1. WHAT IS PREDICTABILITY?
Predictability is the extent to which a system’s 
outputs or effects can be anticipated. In other 
words, it is the degree to which one can 
answer the question, What will this system 
do? Within this broad definition, there are 
three specific senses of predictability—or 
lack of predictability: “unpredictability”—that 
diverge in important ways. 

In the technical sense, “predictability” 
generally refers to a system’s ability to execute 
a task with the same performance that it 
exhibited in testing, in previous applications 
or (in the case of machine learning systems) 
on its training data. This is a function of 
how often the system’s outputs are correct 
(accuracy),4 the extent to which it can achieve 
the same accuracy over time (replicability, 
reproducibility), and the extent to which the 
system can “generalize” to accommodate 
input data that diverge from the data for 
which the system was designed or on which 
it was trained or tested.5 

AI predictability is not the same as reliability, 
which refers to the extent to which a system 
does or does not fail. Even exceptionally 
reliable systems that fail rarely might still 
occasionally fail in very unpredictable ways6 
because the range of failures that the system 
can exhibit is wide. As a result, AI failures can 
be very difficult to model in advance—a fact 
that can be compounded by their opacity 
(see Section 2).7

In the operational sense, “predictability” 
refers to the degree to which an autonomous 
system’s individual actions can be anticipated.8 
All autonomous systems exhibit a degree 
of inherent operational unpredictability, 
even if they do not fail or the outcomes of 
their individual action can be reasonably 
anticipated.9 This is because, by design, such 
systems will navigate situations10 that the 
operators cannot anticipate.11 Consider a fully 
autonomous drone that maps the interior of a 
network of tunnels. Even if the drone exhibits 
a high degree of technical predictability and 

exceptional reliability, those deploying the 
drone cannot possibly anticipate exactly 
what it will encounter inside the tunnels, and 
therefore they will not know in advance what 
exact actions the drone will take.12 While 
technical predictability is solely a function 
of a system’s performance, operational 
predictability is just as much a function of 
the characteristics of the environment and 
mission for which the system is deployed. 

Operational unpredictability is particularly 
inherent in systems designed to handle a 
wide range of inputs, complex environments 
and dynamic conditions. Not only is it hard to 
anticipate what such a system will encounter, 
it may be difficult (especially in the case 
of learning-based systems) to anticipate 
exactly how the system will respond to 
this environment, because such AI systems 
may achieve their goals in ways that are 
not necessarily logical or reasonable by 
human standards (see Figure 1). This notion 
of inherent operational unpredictability is 
elemental to some countries’ definition of 
lethal autonomous weapons and underpins 
some groups’ objections to the development 
and use of such weapons.13 
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Sometimes a high degree of unpredictability is not exactly a bug, but a feature. When Google 
DeepMind’s AI systems famously trounced two champion Go players in 2016 and 2017, 
they did so in part with moves that experts described as “alien” and “from an alternate 
dimension”.14 Roman Yampolskiy describes this unavoidable unpredictability of complex AI 
with the following simple proof: “Suppose that unpredictability is wrong and it is possible for 
a person to accurately predict decisions of superintelligence. That means they can make the 
same decisions as the superintelligence, which makes them as smart as superintelligence but 
that is a contradiction as superintelligence is defined as a system smarter than any person is. 
That means that our initial assumption was false and unpredictability is not wrong.”15 

FIGURE 1

The interaction of technical and operational 
un/predictability gives rise to a third, general, 
meaning of un/predictability: the degree to 
which the outcomes or effects of a system’s 
use can be anticipated. A broad range of 
overlapping factors determine technical and 
operational predictability—and thus the 
predictability of effects—in any given instance 
of employment. These factors include:

Type of system—There are many types of 
algorithmic system, and different systems 
may be more or less predictable in terms of 
performance, may lend themselves to more 

or less predictable types of operations,16 may 
be more or less likely to engage in unwanted 
or surprising behaviours,17 and as a result may 
fail in more or less predictable ways. The level 
of computing power available for a system 
may also affect predictability.18

Type of task or function—Broadly speaking, 
the greater the variety of possible outputs 
or actions that a system can generate 
(sometimes known as the system’s “decision 
space”19), the harder it is to predict individual 
outputs or actions. For example, a system 
that simply detects objects with a yes/no alert 
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may be more predictable than a system that 
characterizes objects by type (say, a system 
that distinguishes between airplanes, cars, 
tanks, people and trees). 

System development or training data—All 
AI systems exhibit a degree of “brittleness”: 
the tendency to fail, sometimes unpredictably, 
in response to inputs for which they have not 
been designed or trained.20 Systems may 
exhibit brittleness as a result of encountering 
edge case or corner case conditions at the 
outer boundaries of the parameters they were 
designed for21 or encountering individual 
out-of-distribution inputs that fall outside the 
scope of the training data,22 or when there are 
broad differences between the training data 
and the input data: a phenomenon known as 
“data shift”.23 

Testing—The more extensively a system 
has been tested against a greater variety 
of environments or inputs, the less likely 
the system is, when fielded, to encounter 
inputs for which its response has never been 
observed or validated.24 

Complexity of the environment—The more 
complex the operating environment to which 
a system is deployed, the more likely it is that 
the system will encounter inputs for which it 
was not specifically trained or tested25 or will 
display new behaviours that have not been 
previously observed or validated (sometimes 
known as “emergent behaviours”26). 

Capacity for self-learning—If a machine 
learning system can adjust itself in real time 
while executing a mission—a technique that 
is gaining favour as a means of continuously 
improving the system’s performance and 
further enabling autonomous operations 
in complex environments—that system’s 
specific outputs may be harder to predict as 
it may acquire new unanticipated behaviours 
that have not been tested.27

Scale and length of the deployment—As 
the scale of the environment increases and the 
length of the operation grows, the more likely 
a system is to encounter inputs for which it 

was not specifically trained or tested,28 exhibit 
certain behaviours that cannot be individually 
anticipated, or (in the case of self-learning 
systems) acquire new unverified capabilities. 
For example, a fixed air-defence system 
that only targets a small slice of airspace 
for a limited window of time is far less likely 
to encounter edge cases or run through a 
long series of unpredictable actions29 than 
an autonomous drone that can rove across 
thousands of square miles in search of targets. 
This is why some groups have suggested that 
implementing strict constraints on where an 
autonomous weapon operates, as well as 
how long it operates, could help counteract 
unpredictability in such systems.30

Data quality—Low-quality or insufficient 
input data may give rise to system failures 
or other outputs that could increase 
unpredictability.31 This factor is particularly 
important, as adversarial actors may 
intentionally present autonomous systems 
with low-quality, distorted, falsified, spoofed, 
or other out-of-distribution inputs to confuse 
and defeat these systems.32

Number of interacting systems—When 
multiple AI systems work together or in 
tandem (as in a swarm) or interact with 
other complex or intelligent systems in the 
environment, the effects of these interactions 
may be exponentially more difficult to 
predict.33 
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2. WHAT IS UNDERSTANDABILITY?
Understandability refers to the degree to 
which any given system can be understood 
by any given person. Whereas a system’s 
predictability relates to the question What 
will the system do? understandability relates 
to the question Why does it do it?34 

Some forms of AI can be indecipherable even 
to the humans who built them, let alone the 
non-technical individuals who will use them 
or be subject to their actions.35 The issue of 
understandability has received much attention 
in recent years because of the growing use of 
these kinds of systems in critical applications 
where a lack of understanding of why an AI 
system is doing what it is doing could pose 
grave risks. Without an understanding of 
why a system is doing what it does, it may be 
difficult to assess if it is operating correctly 
or if it is failing, and it may be difficult to 
anticipate the system’s future actions—
meaning that better understanding improves 
predictability. There are a variety of ways a 
system can be understood, and different 
forms of understanding may be more or less 
appropriate for certain contexts.36

Although understandability is particularly 
challenging in relation to learning-based 
systems (see insert), it is an important 
consideration for all types of AI. Even simpler 
rules-based AI systems might be dangerously 
incomprehensible to a layperson or a user 
who has never interacted with the system 
before. Other terms sometimes used in 
reference to the concept of understandability 
include “transparency”, “interpretability” and 
“intelligibility”.37 

The individual outputs of machine learning 
systems may be especially difficult to anticipate 
and understand. For example, a fairly standard 
neural network-based computer vision system 
that can identify animals does so using a 
probabilistic process that assigns millions 
of weights to the features detected in every 
given image. This is a level of complexity that 
no human mind can fully grasp. Nor is there 
necessarily anything broadly intuitive about the 
process.38 By design, machine learning systems 
make their own “rules” for how to achieve the 
goals that are set for them.39 

As a result, it is hard to tell what features, or 
“artifacts”, in the input data the system is likely 
to draw on to reach a conclusion.40 Such a vision 
system might, for instance, learn to distinguish 
between huskies and wolves not on the basis of 
the shape of the animals themselves, but rather 
on the basis of the image background: if most 
of the wolf images that the system is trained on 
have a snowy background, the system might 
learn to “identify” wolves by simply detecting 
the presence of white in any given image.41 This 
may give developers the impression that the 
system is highly accurate, but once deployed 
the system might classify any white image 
as a wolf and fail to detect wolves that aren’t 
surrounded by snow, making the system more 
unpredictable. A related phenomenon is the 
tendency of certain types of learning algorithm 
to “cheat” to achieve a specified objective—this 
is known as “specification gaming” or “reward 
hacking”, and may be equally problematic.42

A diagram of a neural network architecture
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2.1 THE TWO FACTORS THAT GO 
INTO UNDERSTANDABILITY
 
Broadly speaking, two factors determine 
understandability: the features of the AI 
system and the human’s capacity for 
understanding. Understandability is always a 
function of the two factors in combination.43

2.1.1 Features of the AI System

AI systems vary widely in terms of how 
intrinsically easy they are to comprehend. For 
instance, a simple rule-based algorithm with a 
limited number of elements and a clear intuitive 
logic is likely to be more understandable than a 
neural network with hundreds of hidden layers. 
Systems that are intrinsically understandable 
are sometimes referred to as “interpretable” 
or “transparent” models. Systems that are 
not inherently understandable are sometimes 
referred to as “black box” or “opaque” AI.44

In some cases, extrinsic explanation tools may 
be added to an opaque AI model to make 
it more understandable. Such tools either 
provide specific local explanations for how 
the system produced a specific given output 
(these are sometimes known as “post hoc” 
explanations45) or a global explanation for how 
the AI system produces its outputs in general.46 
These tools are the subject of a growing body 
of technical research (see page 21). 

2.1.2 Human Capacity for Understanding

Every human who is assessing or operating 
an AI system has a different unique capacity 
for understanding. This is based on their level 
of technical expertise, their knowledge of that 
system’s past performance, their knowledge of 
the system’s training data,47 their understanding 
of the environment to which the AI system is 
being deployed and the data it will ingest, and 
the level of attention they can give the system 
in an operation (their “cognitive load”).48 

A human’s capacity for understanding is 
not always grounded in technical literacy or 
direct insight into a system’s architecture. If 

an opaque system is sufficiently predictable 
in its performance, and if the human has 
spent enough time observing the system, 
this may be sufficient for the human to build 
a reliable mental model of how the system 
works, even if they do not understand its 
neural architecture.49 (By analogy, most people 
probably do not know exactly how their toaster 
works, but they do have a robust mental model 
of how it turns bread into toast.) While mental 
models can be useful, they may also have 
limitations if not accompanied by some level 
of technical understanding. For example, if a 
human-machine team encounters conditions 
that differ significantly from those they have 
previously encountered, the operator’s mental 
model may not be able to anticipate how 
exactly the system will respond.50 

2.2 THE PERFORMANCE-
UNDERSTANDABILITY TRADE-OFF
Higher performing AI systems tend to be more 
complex than less advanced AI systems.51 
For example, simple symbolic systems are 
generally quite understandable, but they are 
often too brittle for employment in complex 
environments. By contrast, a sophisticated 
learning-based system may be better suited 
to such environments but it will probably 
also be less understandable52 and thus less 
predictable.53 

Similarly, the more types of inputs and 
parameters a system can account for in its 
processing, the sharper its accuracy may be. 
But it is also likely to be less understandable 
than systems that calculate just a handful of 
parameters across a single data stream.54 
Likewise, if multiple transparent models are 
fused, their outputs could be unintelligible55 
or, if multiple individual AI agents (for instance, 
a swarm) operate as a collective network to 
achieve a goal, the process by which that goal 
is achieved may be highly uninterpretable. 

This performance-understandability trade-
off poses a central paradox of AI.56 As groups 
seek to employ AI for increasingly critical 
roles, such as transportation, medicine and 
warfare, they want systems that have the best 
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possible performance. But those systems may 
prove challenging for human operators and 
stakeholders to understand—which in turn 
poses serious risks.

2.3 HOW UNDERSTANDABILITY 
AND PREDICTABILITY RELATE
Understandability can improve the human’s 
capacity to anticipate what a system will do, 
thus improving predictability. Predictability 
can make it easier for a human to develop 
a robust mental model of the system, thus 
improving their understanding. However, 
given that predictability relates to what a 
system will do and understandability relates 
to why it does it, predictability is not an 
absolute substitute for understandability, 
or vice versa. For example, if an exceptionally 
predictable autonomous system operates 
in a complex or adversarial environment 
or processes large volumes of diverse and 
cluttered data, it is likely to be impossible 
to know how the system would react to all 
the unique conditions and inputs it could 
encounter in any given instance—even 
if it has performed consistently well in 
previous cases—without some degree of 
understandability.57 Nor would it necessarily 
be possible to assess, by way of understanding 
alone, why a given system produced certain 
outputs or achieved certain effects, or 
determine if it is likely to behave the same 
way in future, if that system has not exhibited 
an appropriate level of predictability in the 
past. Highly unpredictable systems cannot 
be accounted for by technical understanding 
alone.

Therefore, a combination of both high 
predictability and high understandability may 
be the only optimal condition for the safe and 
prudent use of complex AI systems grounded 
in human responsibility.

2.4  DRAWING FROM THE CIVILIAN 
AI REALM
In recent years, much of the most advanced 
discourse and research on understandability 

and predictability has focused on civilian 
applications of AI, particularly in areas such 
as transportation, finance, medicine and 
security.58 In these domains, just as in the 
military domain, there are many reasons to 
ensure that AI systems can be both anticipated 
and understood. Much of the technical and 
analytical work that has already been done in 
the civilian realm could therefore have direct 
relevance and even practical utility for those 
seeking to address these considerations in 
the military domain. 

However, the civilian realm and the military 
realm also differ in crucial ways. The two 
domains are subject to different rules. The 
actors in each domain are motivated by 
different goals. Mistakes in each sphere have 
different repercussions, on different scales 
of magnitude; the algorithms employed in 
automated command and control software 
may someday resemble the algorithms used 
for ride-hailing apps, but the repercussions of 
even a minor failure in the former are likely to 
be far more profound than the effects of an 
error in the latter. 

By and large, the environments to which 
advanced military AI systems are subjected 
could be much more dynamic and complex 
than anything faced by equivalent commercial 
AI systems. In both the physical and digital 
domains, active battlefields are complex 
and ever-changing in ways that peacetime 
civilian environments usually are not. And, 
crucially, the military environment is far more 
adversarial than the civilian environment. 
Many AI and autonomous systems used 
in conflict will have to contend with active 
efforts of denial, deception and subterfuge 
on the part of the adversary.59

These differences illustrate that in certain 
regards, predictability and understandability 
have a specific and unique relevance to 
military AI that cannot be fully illuminated or 
addressed through research and measures 
geared for civilian AI. Broadly speaking, these 
unique characteristics of the military domain 
may make predictability and understandability 
both more critical and harder to achieve.
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3. THE ROLE OF PREDICTABILITY AND 
UNDERSTANDABILITY
The international community has not yet 
decided if or how to create and implement 
rules for AI systems in warfare. But 
adherence to any of the options currently 
under consideration—including the 
operationalization of international guiding 
principles,60 new fit-for-purpose rules, an 
outright ban on LAWS, or simply the existing 
requirement for adherence to IHL—will 
hinge on the ability to have systems that 
are both appropriately predictable and 
understandable. This is likely to be just as 
true for the employment of “human-out-of-
the-loop” systems as it will for “human-in-
the-loop” or “human-on-the-loop” teaming 
arrangements.61

For example, the guiding principles adopted 
by the Group of Governmental Experts 
on LAWS in 2019 assert that IHL always 
applies to the employment of autonomous 
weapons and that humans are always 
ultimately responsible for the effects of 
such employment.62 This implies, by default, 
a requirement of understandability and 
predictability among users of such systems. 
If a human operator is setting constraints on 
where and how a lethal autonomous weapon 
system operates, they would want to have 
reasonable confidence that the system will 
comply with those constraints,63 understand 
how it will do so,64 and know how it will 
respond to confounding or compromised 
inputs.65 

By the same token, a legally mandated 
standard of “meaningful human control”66 
over autonomous systems would imply that 
the human interacting with the system at any 
stage of development or employment would 
have an adequate understanding of how the 
system works, why it produces given outputs, 
and what it is likely to do next.67 For instance, 
if an operator directing a human-in-the-loop 
autonomous system approves the system’s 
targeting selections without understanding 

why it made those selections or how likely it 
is to strike them accurately, this likely would 
not count as meaningful or sufficient human 
control according to most definitions of those 
terms.68 

Regardless of which policy options are 
ultimately applied, assured understandability 
and predictability are likely to be 
necessary throughout the entire timeline 
of the development and employment of 

autonomous weapon systems69 and other 
forms of AI related to combat functions.70 
This section describes exactly why and how 
predictability and understandability are likely 
to play important roles at each of these 
stages.

3.1  BEFORE EMPLOYMENT
Long before a weapon system is fielded, it 
goes through a variety of processes intended 
to certify that it will perform in conflict 
as desired and that it will not have any 
unintended harmful consequences as a result 
of flaws, bugs or other issues that could result 
in failures. Appropriate understandability and 
predictability will be fundamental to these 
processes.

In testing and evaluation, system under-
standability could be crucial for debugging 
and troubleshooting;71 gauging whether the 
model is well fitted to its proposed opera-
tional environment, flagging issues such as 
bias72 or irrelevant artifacts73 in the training 
data74 (see Figure 2); identifying whether the 
system is achieving its results legitimately 
rather than by way of irrelevant artifacts or 
“reward hacking”;75 and highlighting oth-
er vulnerabilities76 that may not have been 
identified in development. Meanwhile, sys-
tems with higher predictability will engender 
a more precise assessment of whether they 
will exhibit the same behaviours in the field 
that they exhibited in testing; in contrast, if 
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a system is highly unpredictable, no amount 
of testing will guarantee that it will behave as 
intended in the field.

A rigorous verification and validation77 
process for any autonomous weapon system 
or complex AI agent will likely depend on 
gaining insight into why the system operates 
as it does and what it will do in deployment 
in order to certify that the system meets the 
specific requirements and other criteria that 
were set for it at the beginning of the design 
process.78 Equally, this kind of insight will help 
determine whether the system would meet 
these requirements in the field to the same 
degree that it meets them in testing. (Bridging 
the gap between performance in testing, 
verification and validation and performance 
in the field is especially important, and 
potentially very challenging, when it comes 
to autonomous systems: for more on this, see 
page 19). 

The legal review process, an obligation for 
all States before fielding new weapons, is a 
key step that serves to determine whether the 

intended use of a weapon would, in some or 
all circumstances, violate the international law 
obligations applicable to that State. In legal 
reviews of complex AI systems, this assessment 
would likely rely on an ability to anticipate a 
system’s performance in the functions and 
environments for which it is proposed, identify 
its edge cases and points of failure, model the 
ways in which it would fail and the effects 
of those failures, and illuminate any other 
potential harms that could arise from its use.79 

FIGURE 2

Explainability tools that improve understanding could potentially serve to highlight problems 
with AI systems that might not otherwise be immediately visible. In one well-known 
experiment, researchers showed how an explainability tool (right) could highlight how a 
computer vision system that distinguishes huskies from wolves was erroneously identifying 
wolves based solely on the presence of snow in the images (since most of the wolves in 
the training data were pictured in snowy environments). 80 This type of tool might likewise 
serve to highlight whether a system is engaging in “reward hacking” or other problematic 
behaviours that might otherwise only surface after the system is deployed in the real world. 
Source: Ribeiro et al. (2016). 

The ability to accurately anticipate a system’s 
behaviours could also inform the development 
of additional doctrine or constraints that would 
help ensure that any use of the AI system in 
question complies with international law, in 
particular IHL, as well as national law and other 
applicable requirements.81 For example, if 
reviewers can determine that a system exhibits 
a tendency to fail dangerously in response 
to a particular type of environmental factor, 
they could require that it shall only be used in 
tightly constrained environments where that 
factor is unlikely to be present.
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3.2 DURING EMPLOYMENT
Once a system is fielded numerous planning 
steps, at various military command levels, 
preceding the final decision to employ an AI 
system82 serve to determine whether engaging 
the AI system would facilitate or hinder the 
execution of the objectives of the operation 
and could feasibly do so in compliance with 
IHL and the rules of engagement,83 anticipate 
the risks of employment,84 and develop 
appropriate parameters and constraints for 
the system’s use to avoid those risks and 
comply with the relevant rules and laws.85 
These determinations would necessarily be 
based on some level of understanding of 
how the system works and, by extension, an 
assessment of how it is likely to respond to 
the particular environment at hand.86 (These 
factors may be particularly important when 
it comes to human-out-of-the-loop weapons 
that lack a communications link with their 
human operators and cannot be recalled87). 
In short, the more information that decision 
makers have regarding what the system will 
do and why it will do it, the better equipped 
they will be to make the most responsible 
decision.

While an AI system is actively operating, 
predictability and understandability are two 
complementing factors of robust human-
machine interaction88 as they enable 
operators to precisely calibrate their trust 
in the system,89 thus guiding its appropriate 
use (or non-use) for every given context.90 
Specifically, to calibrate their trust, operators 
require some capacity to anticipate or identify 
system malfunctions; understand how the 
system is likely to respond to the specific 
environmental factors at hand; confirm 
that the system’s outputs are not being 
disproportionately swayed by extraneous 
factors;91 and recognize when a system is 
encountering edge cases or inputs for which 
it was not designed,92 has ingested bad data, 
is being targeted by adversarial attacks93 or is 
exhibiting brittleness.94 In cases where humans 
are teaming with highly autonomous agents 
or weapon systems, understandability and 
predictability may also be key to ensuring that 
the machine’s goals are aligned with those of 
the human operator.95 

The need for robust trust calibration applies 
both to exercising direct control over a 
system during use (for example, appropriately 
trusting in the validity of a target that a system 
is proposing to attack) as well as to employing 
a fully autonomous weapon system (for 
example, appropriately trusting whether the 
employment of the system would be legal 
or would achieve the desired effects without 
resulting in failures or undue harm).96 

 
3.3 AFTER EMPLOYMENT
The requirements for predictability and 
understandability do not cease to be relevant 
after the deployment of the AI weapon system. 
In post-use assessment,98 organizations 
seeking to audit or investigate an operation 
involving AI will desire a level of direct insight 
into the AI system to aid in determining 
exactly what happened, and why. This includes 
determining why the relevant AI agents 
behaved as they did,99 and why certain effects 
resulted from their employment.100 It also 
extends to a consideration of whether those 
responsible for an AI system’s use reasonably 
anticipated the effects of their actions (a legal 
requirement under IHL), took reasonable steps 
to avoid undue harms, and followed IHL and 
rules of engagement in other regards.101 

Understandability and predictability would 
also aid in the determination of whether the 
adverse effects of an AI system’s use in a 
particular instance are likely to emerge again. 
Such assessments will inform regulatory, 
doctrinal or technological reforms to prevent 
future harms.102 

Many algorithmic systems present outputs 
with a confidence score that indicates the 
likelihood that the output is correct. While it 
might be tempting to think that this can make 
systems more understandable and predictable, 
these scores are usually not sufficient for an 
operator to precisely calibrate trust, especially 
if that operator has a minimal technical literacy 
or if they must calibrate their trust in a short 
window of time.97 
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4. WHAT IS APPROPRIATE PREDICTABILITY AND 
UNDERSTANDABILITY? 
As the previous section illustrates, both 
predictability and understandability are 
necessary to some degree at every stage in the 
development, employment and assessment 
of military AI systems. But what would 
constitute an appropriate level and type of 
predictability and understandability in each of 
these cases? While this is a complex question 
that calls for extensive research, it is likely 
that the exact required level of predictability 
and understandability for military AI systems 
will be shaped by the following questions and 
considerations, among other factors.103

•	 How critical is the function? In highly 
critical roles where the effects of system 
failure or misuse could be catastrophic, 
the requirement for understandability and 
predictability at all stages of development, 
employment and assessment is likely to be 
higher.104 Conversely, for non-critical AI, the 
requirement for understandability at certain 
touchpoints of human control, as well as the 
requirement for technical predictability, may 
be lower.105

•	 Are there risks of escalation? Given 
that the application of unpredictable black 
box AI in particularly sensitive contexts (for 
example, contested border regions) could 
pose a risk of rapid inadvertent escalation,106 
the requirement for predictability and 
understandability in such contexts may be 
higher.

•	 What is the form of human control? 
Operators can “control” AI in a variety of 
ways,107 and requirements for predictability 
and understandability will vary accordingly. 
For example, requirements may vary 
depending on whether the AI is a human-
in-, human-on- or human-out-of-the-loop 
system; whether control is exercised solely 
through the establishment of parameters 
before employment or through some form 
of direct supervision; and whether there 

is a possibility of recalling or aborting the 
system.108

•	 How much operator time and atten-
tion is available?109 In cases where a human 
operator only has a brief window to review a 
system’s explanation for a given output, and a 
high cognitive load110—for example, in a case 
where an AI system identifies a time-sensitive 
target with only a brief opportunity to strike 
while a range of other factors are competing 
for the operator’s attention—there may be a 
different requirement for understandability 
and predictability than there would be in cas-
es where the operator has the time and men-
tal space to conduct a meticulous review of 
the system’s logic process, past performance 
and other factors.111 

•	 Can the operator access or under-
stand the input data?112 If operators using 
human-in- or human-on-the-loop AI sys-
tems can directly vet the source data of an 
AI system’s input, the requirement for sys-
tem transparency—or explainability tools 
—might be lower, assuming that the source 
data are easy to vet. For example, if an oper-
ator can review images of objects that an AI-
based automatic targeting system proposes 
to shoot at, the operator may not require an 
additional explainability function since they 
can directly verify the image. However, if the 
system’s proposals derive from, say, a matrix 
of video, signals intelligence, radar and hu-
man intelligence,113 the operator probably 
could not reasonably vet all the data, and 
so system transparency or an explainability 
function might be necessary to highlight the 
particularly salient individual inputs.114 

•	 Where is the system being em-
ployed? Given that large, complex adversarial 
environments are more likely to present sys-
tems with inputs for which they have not been 
trained or tested, a higher level of understand-
ability and predictability may be required 
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in such environments. For example, a fixed 
aerial defence system operating in a sparse 
environment where civilian objects and per-
sons are not likely to be present would have 
different—probably lower—requirements 
for predictability and understandability than 
a highly autonomous vehicle operating in a 
cluttered and adversarial urban environment, 
especially if civilian objects and persons are 
likely to be present alongside combatants,115 
or if the status of objects could switch during 
the battle.116 

•	 Who is the adversary? Because of 
the specific challenge posed by adversariality 
to safe and legal AI system employment,117 
systems that will operate in highly adversarial 
environments where there is a significant 
likelihood of subterfuge, data tainting or 
other AI countermeasures may require higher 
levels of predictability and understandability 
so that operators can identify when the 
system is falling prey to such attacks.118

•	 (For understandability) Who is the 
human user or assessor of the system? 
Because different individuals have different 
capacities and motivations for understanding 
the AI they are interacting with, the audience 
of an AI system is a key determining factor 
in the requirement for the type and level of 
understandability.119 An auditor validating a 
system before deployment may need an in-
depth understanding of the system’s technical 
architecture, while a commander may only 
want a broad understanding of how the 
system is likely to respond in a forthcoming 
operation, and an operator may require a 
robust mental model to ensure that their 
trust is always calibrated.120 (Some groups 
have begun to define audience categories 
and their corresponding understandability 
requirements in the civilian domain.121)

•	 (For understandability) Why is the 
system being understood or anticipated? 
Just as requirements for understandability 
will vary depending on who is interacting with 
the system, they will likewise vary according 
to why those individuals are interacting 
with the system. For example, appropriate 

understandability will differ depending on 
whether a system is being assessed for testing 
and certification, strategic or operational 
planning, direct human control or supervision, 
or after-action assessments and audits.122 

It should be noted that it is unlikely that all 
militaries wishing to use AI and autonomous 
combat technologies will share the 
same desired thresholds for appropriate 
understandability or predictability in all 
contexts. In a high-intensity engagement, 
for example, operators or other stakeholders 
may jettison previously rigorous internal 
requirements for understandability and 
predictability,123 especially when operators 
only have a limited window to understand 
the AI system and any delays stemming from 
a requirement for understandability might 
result in harm—all the more so if stakeholders 
know that their adversary is using faster, 
more capable black box systems of their own. 
In some instances, given the widely held view 
of the performance-understandability trade-
off (see page 10), stakeholders might want to 
opt for a less inherently transparent system 
if that system could be more lethal or more 
precise than a more transparent alternative.124 
Similarly, given that unpredictable activity is a 
common tactic in warfare to sow uncertainty in 
the adversary125 and predictable autonomous 
systems might be more vulnerable to 
countermeasures, militaries might seek to 
employ systems that achieve desired effects 
through unpredictable actions.126 These 
factors may complicate efforts to establish 
universal baselines of predictability and 
understandability required for compliance 
either to existing IHL or to potential new fit-
for-purpose rules.
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5. MOVING FORWARD
Achieving and assuring these appropriate 
levels of predictability and understandability 
in LAWS and other forms of military AI 
will be a profoundly complex challenge. 
As discussed earlier, artificially intelligent 
systems can be inherently unpredictable 
and unintelligible. These inherent qualities 
are likely to be compounded by the types of 
environment that these technologies will be 
subjected to in conflict. Even the enforcement 
of blanket bans or restrictions on the use of 
unpredictable or unintelligible systems would 
still depend on instruments to measure and 
test predictability and understandability 
in a diverse range of complex computer 
systems—a formidable challenge. A plurality 
of experts consulted noted that any potential 
measures to address the black box dilemma 
will likely implicate new lines of action and 
inquiry related to testing, personnel training 
and standards, as well as a closer analysis of 
the feasibility of XAI. 

5.1 TESTING, TRAINING AND 
STANDARDS

5.1.1 Testing 

It is impossible to anticipate or understand 
the behaviours, failures and effects of an AI 
system operating in conditions for which it 
has not specifically been tested.127 As such, 
one potential option to improve system 
predictability and understandability is to 
overhaul testing, evaluation, verification and 
validation regimes128 so as to cover the broadest 
possible range of inputs and environments 
that the system could foreseeably encounter 
once fielded. This might include a wide 
range of adversarial contexts,129 as well as 
interactions with other complex systems in the 
battlespace.130 For machine learning systems 
there might additionally be requirements, 
at the development stage, for the data sets 
used to train the algorithms to cover the 
broadest possible range of inputs, with a 
wide distribution of variables, as well as for 
“adversarial training” to be conducted, so that 

the likelihood of systems encountering inputs 
not covered by their training is reduced.131 To 
bolster these safeguards, organizations may 
additionally need to require that systems 
only be employed in environments for which 
they have been specifically and rigorously 
tested (for example, a computer vision system 
that has only been tested for clear-weather 
daytime operations would be prohibited for 
use in night-time operations or in adverse 
weather).

That being said, given the inherent operational 
unpredictability of employing autonomous 
systems, particularly systems that have 
a wide decision space or that operate in 
complex and dynamic environments (see 
page 7), it will be challenging to certify that 
a system will respond safely or appropriately 
to every possible input and condition it 
might encounter in deployment.132 Certain 
edge cases may only arise from a very 
specific and unforeseeable set of interacting 
circumstances. Testing a system against all 
such potential combinations of circumstances 
that might give rise to all of its possible 
failures could be extremely challenging.133 
Furthermore, the possible outcomes of a 
failure, or even of the interactions between 
the AI system and other complex systems, are 
potentially far more diverse and difficult to 
model134 than the outcomes of a malfunction 
in, say, a missile on a ballistic trajectory—
again, especially if the AI system is highly 
autonomous and the proposed deployment 
environment is complex.135

It has therefore yet to be established whether 
traditional methods for assessing complex 
weapons would be sufficient to provide a 
clear view on the extent to which a highly 
autonomous system is likely to behave as 
intended or fail as anticipated.136 Even newer 
testing techniques developed specifically for 
machine learning systems would likely struggle 
to cover all the potential edge cases that may 
arise in a very complex environment such 
as a battlefield.137 This could be particularly 
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challenging when it comes to learning 
AI systems that continuously tweak their 
parameters to improve their performance. 
While such systems could offer significant 
gains by progressively “fitting” their statistical 
models to the deployed environment, thus 
potentially reducing brittleness, such systems 
could also potentially acquire behaviours that 
have not been tested and certified.138 

To address these concerns, some observers 
propose a recursive testing, evaluation, 
verification and validation process, where 
systems (both active and non-active learning) 
are continually tested and certified to ensure 
that they continue to meet their safety and 
legal requirements. Where necessary, these 
systems can be updated in response to 
feedback from the field, assuming that it can 
be certified that these updates would not, 
in turn, generate new failures.139 Given that 
both understandability and predictability 
centre on the human subject understanding 
or anticipating a system, it is likely that 
testing and verification of these attributes in 
AI systems would need to include rigorous 
human evaluations140 to certify that the model 
in question exhibits the desired characteristics 
when operating with or under the specific 
type of user for whom it is designed.141 To be 
fully accurate, these evaluations may need to 
involve the actual types of individual who will 
be anticipating or interpreting the behaviours 
of the system in real life.142 

More broadly, it has not yet been determined 
how predictability and understandability 
can be consistently and reliably measured, 
since both are influenced by complex 
variables (like environmental factors) 
and fuzzy characteristics such as “human 
capacity for understanding”. In advance of 
the establishment of evaluation programmes, 
it is therefore widely agreed that extensive 
further research will likely be necessary to 
establish viable measurable criteria for grading 
understandability and predictability.143 

5.1.1 Training

An oft-cited option to enhance individuals’ 
capacity for understanding AI systems is 
rigorous technical and operational training.144 

Given the complex computer science 
underlying all forms of AI, technical literacy 
training could potentially enable individuals 
to better grasp how systems actually function. 
The resulting technical understanding may 
be more effective than understanding based 
on explainability tools that only provide an 
approximate abstraction of the system’s logic 
(see page 22) or the advice of AI interpreters 
who “translate” concepts for lay users.145 

Operational training could potentially 
strengthen human subjects’ mental models 
of the systems they interact with and ensure 
that they do not encounter situations for 
which they do not have any understanding of 
the systems’ likely responses. 

Such technical and operational training 
regimes may have to be applied for every 
human subject that will be interacting with 
AI systems146 at every stage of development, 
employment and assessment—including 
senior commanders determining whether to 
use such systems, legal counsellors assessing 
how the systems could be used within the 
limits of the law, and auditors investigating 
incidents after the fact. In all of these cases, 
such training would have to be expansive, 
detailed and tailored to match the complexity 
of the AI systems in question and the varying 
required levels of understanding dictated by 
the role.147 

5.1.2 Standards

Implementing and assuring appropriate 
predictability and understandability would 
likely hinge on extensive new technical 
research as well as a significant overhaul of 
current doctrine.148 One potential measure 
that could provide guidance and consistency 
in these efforts is the creation of standards. 
A number of efforts are currently ongoing 
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to establish standards and guidance for 
enshrining, measuring and certifying 
predictability and understandability in civilian 
AI systems,149 and it has been suggested that 
these kinds of standards may provide a robust 
template for standards for military AI.150 

However, the implementation of such 
standards rests on several unanswered 
questions. For one, it is possible that certain 
AI technologies are “pre-standard”. This is 
to say, because these technologies are still 
immature they are likely to continue evolving 
in ways that could render any overly premature 
standards obsolete.151 Additionally, measures 
to apply civilian standards to military AI may 
have to account for the inherent differences 
between the two domains, namely in terms 
of the adversariality of conflict as well as the 
requirement of secrecy.152 More research 
is therefore needed on the feasibility of 
standards specifically for LAWS and other 
forms of military AI.

5.2 A TECHNICAL APPROACH: 
EXPLAINABLE AI

5.2.1 What is Explainable AI?

As concerns about understandability have 
come to the fore, there has been growing 
interest and investment in efforts to address 
the challenge by technical means. This field 
of research is known as Explainable AI.

Within the field of XAI, there are two 
essential (and very different) approaches 
to engendering understandability. One 
approach seeks to build, from the ground 
up, high-performance AI systems that are 
intrinsically interpretable; such systems 
are sometimes referred to as “transparent 
models” or “self-explainable” models.153 The 
second approach seeks to build add-on tools 
that can “explain” or “translate” unintelligible 
AI systems. Such explanations can take a 
variety of forms, including:154

•	 Verbal descriptions that explain how 
a particular output was achieved. For example, 
a tool that informs the user that “the system 

identified the object as an aircraft because 
of its colour, its radar cross section, and its 
altitude and speed”.
•	 Visualizations that highlight features 
of the input data that were particularly defin-
itive for the resulting output (for example, a 
technique known as “saliency mapping”).
•	 Counterfactual or contrastive ex-
planations that illustrate why the system 
generated the given output and not some-
thing else.
•	 Approximate models and other ab-
stractions, which essentially replicate the 
black box system’s process with a simplified 
interpretable model.

XAI draws on knowledge from a range of non-
technical fields like psychology, human factors 
and other social sciences. For example, to build 
a strong explanation tool, XAI researchers may 
need to first answer the very philosophical 
question, What even is an explanation?155

5.2.2 Challenges of Explainable AI

To be truly useful, an explanation must be 
accurate, clear and meaningful.156 While XAI 
is often described as a present-day solution 
to the black box dilemma, the challenges of 
building XAI that meet all these and other 
criteria are manifold. 

For one, given that requirements for 
understandability will vary widely according 
to a broad range of factors (see page 17) 
and XAI tools vary in terms of the type of 
understanding they engender, it is difficult for 
researchers to determine what explanatory 
information is necessarily relevant or 
irrelevant in any single given application.157 
In testing, operators might require detailed 
technical XAI-generated information; in live 
operations, where the operator is likely to 
contend with many intensive demands on 
their attention, a detailed explanation will not 
be of any value158 or might even do more harm 
than good.159 Therefore, each type of user 
may require different types of explanations. 
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Compounding this issue is the difficulty of 
testing the practical value of XAI approaches 
through human evaluations.160 Those XAI 
studies that do include human evaluations161 
have not generally tested subjects in 
scenarios that would be approximate to 
warfighting environments, where the stakes 
of decisions are very high, the margin for 
error is low and the cognitive burden on 
operators is crushing.162 

Furthermore, explainability tools can only 
ever provide an approximation of the 
actual opaque AI system.163 As such, the 
explanations are not always sufficiently 
detailed to provide insight into the 
correctness of the AI system’s output164 or, 
worse, explanations can be incorrect.165 And 
when an explanation is found to be incorrect, 
the user’s trust in the system is likely to drop 
considerably—undermining effective trust 
calibration.166 

A converse challenge is the tendency of 
explanation tools to engender over-trust 
in AI systems.167 Systems that provide an 
eminently understandable explanation of a 
highly complex system may in fact offer very 
little insight into whether the AI system is right 
or wrong (see Figure 4), especially if these 
explanations match the user’s expectations 
or if the user is biased in favour of the 
XAI tool.168 For these reasons, some have 
proposed that inherently understandable 
AI architectures are preferable to opaque 
systems with explainability add-ons, 
especially when both options yield similar 
performance.169 

FIGURE 3

Evidence for Animal Being a

Siberian Husky

Evidence for Animal Being a

Transverse Flute 

Explanations Using
Attention Maps

Test Image

Sometimes, explainability tools can be wrong. In this example, a “saliency map” explainability 
tool that shows users which parts of an image were most influential in the AI system’s 
analysis of that image provides a nearly identical explanation for both a correct identification 
(centre) and an incorrect one (right). Source: Chaofan Chen, and Rudin (2019).

For these reasons, XAI remains a bleeding-
edge research problem. Even much of the 
most advanced technical work in this realm is 
still only foundational.170 It would therefore 
be potentially problematic to build policy 
or norms on the assumption that reliable, 
replicable understandability for complex 
AI in critical roles can be achieved by 
technical means alone in either the 
short or medium term. It may be safer 
to assume that a lack of understandability 
could continue to be an inherent aspect of 
complex AI in all the roles for which it is being 
considered and that technical explainability 
measures will at best serve to complement 
non-technical approaches.

Add-on explainability tools may not be 
a viable proposition for autonomous 
weapons that do not maintain a regular 
communications link with the operators 
(for example, an autonomous drone). 
Additionally, if such systems are non-
retrievable—for example, an autonomous 
missile system—their explanations would 
likewise be unavailable171 for after-action 
assessments, audits and investigations.
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CONCLUSION: FIVE AVENUES FOR ACTION
This study has sought to establish a baseline of common knowledge related to 
understandability and predictability in military applications of AI. It points to a variety 
of avenues for action by the policy community, the technical community and military 
organizations: 

1. Adopt a common taxonomy and framing of predictability and 
understandability. There are various different senses of both predictability and 
understandability, and the many related— sometimes overlapping—terms and ideas 
related to this issue remain poorly defined. This hinders precise, effective dialogue. 

2. Explore non-military initiatives on AI understandability and 
predictability. Issues related to understandability and predictability have been 
explored extensively in the civilian sector. A number of organizations have even 
begun to take substantive steps to address these challenges. While the civilian 
domain and the battlefield differ in many crucial respects, some of the approaches 
currently under consideration in critical domains such as transportation, medicine, 
finance and security could potentially serve as object lessons for the ongoing debate 
on LAWS and other forms of military AI. 

3. Study the factors that determine appropriate levels of understandability 
and predictability. As described in Section 4, a wide range of factors determine 
the appropriate level of understandability and predictability in any given instance 
of development, employment or after-action assessment. A common formulation 
of these factors could serve as a foundation for debate on the adoption and 
implementation of potential frameworks, norms or standards for human-machine 
interaction and could highlight areas of shared understanding or divergence on such 
instruments and measures. 

4. Develop standardized metrics to grade predictability and 
understandability. While it is broadly agreed that understandability and predictability 
are fundamental to the proper employment of AI in combat operations, more work is 
needed on how to reliably measure these characteristics in military systems. 

5. Assess the viability of training and testing regimes that can engender 
robust AI understanding and account for AI unpredictability. Given the centrality 
of testing and training for assuring understandability and predictability in AI, and 
given the challenges of testing and training described in Section 5, publicly shared 
assessments of the viability of such training and testing techniques could prove 
useful for guiding the policy debate.

All the lines of action listed here will require close collaboration. Policy must be grounded 
in technical expertise, technical solutions must align with legal requirements, and national 
doctrine must match shared norms and principles. While this is true of the ongoing debate 
over LAWS and military AI in general, it may be particularly true of understandability and 
predictability. The black box dilemma stands squarely at the intersection of technical, 
normative and doctrinal considerations. This report therefore illustrates the urgent need 
for a diverse, rigorously interdisciplinary, cross-cutting dialogue between all stakeholders.
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Predictability and understandability are widely held to be vital characteristics of artificially 
intelligent systems. Put simply: AI should do what we expect it to do, and it must do so for 
intelligible reasons. This consideration stands at the heart of the ongoing discussion about le-
thal autonomous weapon systems and other forms of military AI. But what does it mean for an 
intelligent system to be "predictable" and "understandable" (or, conversely, unpredictable and 
unintelligible)? What is the role of predictability and understandability in the development, 
use, and assessment of autonomous weapons and other forms of military AI? What is the ap-
propriate level of predictability and understandability for AI weapons in any given instance of 
use?  And how can these thresholds be assured? 

This study provides a clear, comprehensive introduction to these questions, and proposes a 
range of avenues for action by which they may be addressed.
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